Exact Mass: 803.6427
Exact Mass Matches: 803.6427
Found 500 metabolites which its exact mass value is equals to given mass value 803.6427
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PC(15:0/22:0)
PC(15:0/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/22:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(15:0/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/22:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(22:0/15:0)
PC(22:0/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/15:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(22:0/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(22:0/15:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(16:0/24:0)
PE(16:0/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/24:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/24:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/24:0), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one tetracosanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(18:0/22:0)
PE(18:0/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/22:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of behenic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:0/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/22:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of behenic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:0/20:0)
PE(20:0/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/20:0), in particular, consists of two chains of arachidic acid at the C-1 and C-2 positions. The arachidic acid moieties are derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:0/20:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PE(20:0/20:0), in particular, consists of two eicosanoyl chains at positions C-1 and C-2. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(22:0/18:0)
PE(22:0/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/18:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of stearic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:0/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/18:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of stearic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(24:0/16:0)
PE(24:0/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/16:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of palmitic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(24:0/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/16:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of palmitic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-16:0/22:0)
PC(O-16:0/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-16:0/22:0), in particular, consists of one chain of Palmityl alcohol at the C-1 position and one chain of behenic acid at the C-2 position. The Palmityl alcohol moiety is derived from animal fats and vegetable oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-16:0/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-16:0/22:0), in particular, consists of one chain of Palmityl alcohol at the C-1 position and one chain of behenic acid at the C-2 position. The Palmityl alcohol moiety is derived from animal fats and vegetable oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PC(O-18:0/20:0)
PC(O-18:0/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-18:0/20:0), in particular, consists of one chain of Stearyl alcohol at the C-1 position and one chain of arachidic acid at the C-2 position. The Stearyl alcohol moiety is derived from beef fat, fish oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-18:0/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-18:0/20:0), in particular, consists of one chain of Stearyl alcohol at the C-1 position and one chain of arachidic acid at the C-2 position. The Stearyl alcohol moiety is derived from beef fat, fish oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE-NMe(15:0/24:0)
PE-NMe(15:0/24:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(15:0/24:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe(24:0/15:0)
PE-NMe(24:0/15:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(24:0/15:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(14:0/24:0)
PE-NMe2(14:0/24:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(14:0/24:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(16:0/22:0)
PE-NMe2(16:0/22:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(16:0/22:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of behenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(18:0/20:0)
PE-NMe2(18:0/20:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:0/20:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:0/18:0)
PE-NMe2(20:0/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:0/18:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:0/16:0)
PE-NMe2(22:0/16:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:0/16:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:0/14:0)
PE-NMe2(24:0/14:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:0/14:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PC(P-18:0/18:1(12Z)-2OH(9,10))
PC(P-18:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 1Z-octadecenyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
PC(18:1(12Z)-2OH(9,10)/P-18:0)
PC(18:1(12Z)-2OH(9,10)/P-18:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:1(12Z)-2OH(9,10)/P-18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 1Z-octadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).
CE-3-2
PC(13:0/24:0)[U]
PC(14:0/23:0)[U]
PC(16:0/21:0)[U]
PC(17:0/20:0)[U]
PC(18:0/19:0)[U]
PC(19:0/18:0)
PC(20:0/17:0)[U]
PC(21:0/16:0)[U]
PC(23:0/14:0)[U]
PC(24:0/13:0)[U]
PC(25:0/12:0)[U]
PC(26:0/11:0)[U]
PC(O-16:0/22:0)
PC(O-16:0/22:0)[U]
PC(O-18:0/20:0)
PC(O-18:0/20:0)[U]
PE(19:0/21:0)[U]
PE(18:0/22:0)
PE(18:0/22:0)[U]
PE 40:0
HexCer 39:0;O4
(R)-1-((((2-Aminoethoxy)hydroxyphosphinyl)oxy)methyl)ethylene diicosanoate
N-(2-hydroxydocosanoyl)-1-O-beta-D-glucosyl-4-hydroxy-15-methylhexadecasphinganine
2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-(2-hydroxytricosanoylamino)-15-methylhexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
(2-Hexacosanoyloxy-3-undecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Heptadecanoyloxy-2-icosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
7-[(Dodecanoyloxy)methyl]-4-hydroxy-N,N,N-trimethyl-9-oxo-3,5,8-trioxa-4-phosphadotriacontan-1-aminium 4-oxide
[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] hentetracontanoate
(3-Decoxy-2-octacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
2-[3-octanoyloxy-2-[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-decanoyloxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-icosanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2,3-bis[[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-docosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-docos-13-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-dodecanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
(3-Icosoxy-2-octadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] henicosanoate
2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxytricosane-1-sulfonic acid
3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]pentacosane-1-sulfonic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] icosanoate
(4E,8E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxytricosa-4,8-diene-1-sulfonic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] octadecanoate
(4E,8E,12E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxytricosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] hexacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] heptadecanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] nonadecanoate
(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxytricos-4-ene-1-sulfonic acid
(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]pentacos-4-ene-1-sulfonic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] hexadecanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] tetracosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] pentadecanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octacosoxypropan-2-yl] tridecanoate
(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]pentacosa-4,8-diene-1-sulfonic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptacosoxypropan-2-yl] tetradecanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] octacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] docosanoate
2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-tetracosanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid
(3-Dodecoxy-2-hexacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Heptacosoxy-2-undecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Pentacosanoyloxy-3-tridecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Pentacosoxy-2-tridecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Henicosanoyloxy-3-heptadecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Nonadecanoyloxy-3-nonadecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Pentadecoxy-2-tricosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Docosoxy-2-hexadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Tetracosoxy-2-tetradecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Pentadecanoyloxy-3-tricosoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Heptacosanoyloxy-3-undecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Decanoyloxy-3-octacosoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Dodecanoyloxy-3-hexacosoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Henicosoxy-2-heptadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
2-[4-[3-[(Z)-docos-13-enoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
2-[4-[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] hentriacontanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] octacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] triacontanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] nonacosanoate
4-[3-[(Z)-pentadec-9-enoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-henicosanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(Z)-henicos-11-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(Z)-icos-11-enoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(Z)-docos-13-enoyl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2-Docosanoyloxy-3-hexadecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Icosanoyloxy-3-octadecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] heptacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] pentacosanoate
(2-Tetracosanoyloxy-3-tetradecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] tricosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] dotriacontanoate
(3-Nonanoyloxy-2-octacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Nonacosanoyloxy-3-octanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] henicosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] docosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] tricosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] tetracosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] pentacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] hexacosanoate
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] heptacosanoate
(3-Dodecanoyloxy-2-pentacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Tetracosanoyloxy-3-tridecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(3-Tetradecanoyloxy-2-tricosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Docosanoyloxy-3-pentadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Henicosanoyloxy-3-hexadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(2-Nonadecanoyloxy-3-octadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(10Z,12Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracosa-4,8,12-trien-2-yl]octadeca-10,12-dienamide
(11Z,14Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8,12-trien-2-yl]hexacosa-11,14-dienamide
(3-Decanoyloxy-2-heptacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
(14Z,16Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8,12-trien-2-yl]docosa-14,16-dienamide
(13Z,16Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8,12-trien-2-yl]octacosa-13,16-dienamide
(4Z,7Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexacosa-4,8,12-trien-2-yl]hexadeca-4,7-dienamide
(18Z,21Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8,12-trien-2-yl]tetracosa-18,21-dienamide
[(2S)-3-docosanoyloxy-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-tetracosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] pentacosanoate
(5E,8E,11E,14E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-8-en-2-yl]tetracosa-5,8,11,14-tetraenamide
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] tetracosanoate
4-[2-[(E)-henicos-9-enoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-pentacosanoyloxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-hexacosanoyloxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-pentacos-11-enoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] hexacosanoate
4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] pentacosanoate
[(2R)-2-dodecanoyloxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-docos-11-enoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] tricosanoate
[(2R)-2-tetradecanoyloxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(E)-henicos-9-enoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-henicosanoyloxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(E)-tetracos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-icos-11-enoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] hexacosanoate
4-[3-hexadecanoyloxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-tetracosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-pentadec-9-enoyl]oxy-3-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-pentadec-9-enoyl]oxy-2-[(18E,21E)-tetracosa-18,21-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-icosanoyloxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(11E,14E)-pentacosa-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-tricosanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-2-tetracosanoyloxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-tetradecanoyloxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(E)-tetracos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-tetracosanoyloxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-icosanoyloxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-icos-11-enoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] tricosanoate
4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E)-hexacosa-11,14-dienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-henicosanoyloxy-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-docosanoyloxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-pentacos-11-enoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-hexacosanoyloxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-heptadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-docosanoyloxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E)-pentacosa-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-hexadecanoyloxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-docos-11-enoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-henicosanoyloxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(5E,8E,11E,14E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadec-4-en-2-yl]tetracosa-5,8,11,14-tetraenamide
4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-nonadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-pentacosanoyloxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-pentadecanoyloxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-pentadecanoyloxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]dodecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]docosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]tetradecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]octadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(docosanoylamino)-3,4-dihydroxyoctadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxydecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(Z)-docos-13-enoyl]amino]-3,4-dihydroxyoctadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetracosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
1-hexadecyl-2-docosanoyl-sn-glycero-3-phosphocholine
A phosphatidylcholine O-38:0 in which the alkyl and acyl groups specified at positions 1 and 2 are hexadecyl and docosanoyl respectively.
1-octadecyl-2-icosanoyl-sn-glycero-3-phosphocholine
A phosphatidylcholine O-38:0 in which the alkyl and acyl groups (located at positions 1 and 2 respectively) are octadecyl and icosanoyl.
phosphatidylcholine O-38:0
A glycerophosphocholine that is an alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 38 carbons and 0 double bonds.
phosphatidylcholine 37:0
A 1,2-diacyl-sn-glycero-3-phosphocholine in which the two acyl groups contain a total of 37 carbons and no double bonds.
phosphatidylethanolamine 40:0
A phosphatidylethanolamine in which the two acyl groups contain 40 carbon atoms and no double bonds.
phosphatidylethanolamine 40:0 zwitterion
A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 40 carbons in total with 0 double bonds.
MePC(37:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MePC(36:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(42:5)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
dMePE(38:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
LPC(38:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(43:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved