Exact Mass: 801.402084

Exact Mass Matches: 801.402084

Found 55 metabolites which its exact mass value is equals to given mass value 801.402084, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(14:1(9Z)/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-oxo-3-{[(2R)-1-(phosphonooxy)-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl]oxy}propyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C40H68NO11PS (801.4250468)


PA(14:1(9Z)/LTE4) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/LTE4), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Leukotriene E4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(LTE4/14:1(9Z))

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-3-oxo-3-[(2R)-3-(phosphonooxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]propyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C40H68NO11PS (801.4250468)


PA(LTE4/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(LTE4/14:1(9Z)), in particular, consists of one chain of one Leukotriene E4 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2S)-2-amino-3-{[hydroxy((2R)-3-(tetradecanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C40H68NO13P (801.4428048)


PS(14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:0)

(2S)-2-amino-3-{[hydroxy((2R)-2-(tetradecanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C40H68NO13P (801.4428048)


PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/PGE2)

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H68NO13P (801.4428048)


PS(14:1(9Z)/PGE2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/PGE2), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGE2/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H68NO13P (801.4428048)


PS(PGE2/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGE2/14:1(9Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/PGD2)

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H68NO13P (801.4428048)


PS(14:1(9Z)/PGD2) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/PGD2), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(PGD2/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H68NO13P (801.4428048)


PS(PGD2/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(PGD2/14:1(9Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2S)-2-amino-3-({hydroxy[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C40H68NO13P (801.4428048)


PS(14:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C40H68NO13P (801.4428048)


PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:1(9Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

cyclo-(Phe-Ser-Pro-Ile-Phe-Pro-Ile)|euryjanicin D

cyclo-(Phe-Ser-Pro-Ile-Phe-Pro-Ile)|euryjanicin D

C43H59N7O8 (801.4424894000001)


   
   
   
   
   
   
   

PS(14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PS(14:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C40H68NO13P (801.4428048)


   

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:0)

PS(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/14:0)

C40H68NO13P (801.4428048)


   

PS(14:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PS(14:1(9Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C40H68NO13P (801.4428048)


   

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:1(9Z))

PS(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:1(9Z))

C40H68NO13P (801.4428048)


   

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-beta-D-galactopyranoside

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->3)-beta-D-galactopyranoside

C34H59NO20 (801.3630254)


   

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranoside

oct-7-en-1-yl 2-acetamido-2-deoxy-alpha-D-galactopyranosyl-(1->3)-[6-deoxy-alpha-L-galactopyranosyl-(1->2)]-beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranoside

C34H59NO20 (801.3630254)


   

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-alpha-D-galactopyranoside

C34H59NO20 (801.3630254)


   

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->4)-2-acetamido-2-deoxy-beta-D-glucopyranoside

C34H59NO20 (801.3630254)


   

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside

oct-7-en-1-yl 6-deoxy-alpha-L-galactopyranosyl-(1->2)-[alpha-D-galactopyranosyl-(1->3)]-beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-beta-D-glucopyranoside

C34H59NO20 (801.3630254)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundecan-2-yl]heptanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyundecan-2-yl]heptanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonan-2-yl]nonanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxynonan-2-yl]nonanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradecan-2-yl]butanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytetradecan-2-yl]butanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]decanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyoctan-2-yl]decanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridecan-2-yl]pentanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxytridecan-2-yl]pentanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadecan-2-yl]propanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxypentadecan-2-yl]propanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodecan-2-yl]hexanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydodecan-2-yl]hexanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]octanamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxydecan-2-yl]octanamide

C36H67NO18 (801.4357921999999)


   

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]acetamide

N-[1-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-hydroxyhexadecan-2-yl]acetamide

C36H67NO18 (801.4357921999999)


   
   
   
   
   

2-({[(2s)-1-[(2s)-2-[(2s)-2-{[(2r,3r)-10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

2-({[(2s)-1-[(2s)-2-[(2s)-2-{[(2r,3r)-10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C41H60ClN5O9 (801.407934)


   

2-[({1-[2-(2-{[10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-4-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

2-[({1-[2-(2-{[10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-4-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

C41H60ClN5O9 (801.407934)


   

(2s)-2-{[(2s)-2-{[(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-(1h-indol-3-yl)propylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-4-(c-hydroxycarbonimidoyl)butanoic acid

(2s)-2-{[(2s)-2-{[(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-amino-1-hydroxy-3-(1h-indol-3-yl)propylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-4-(c-hydroxycarbonimidoyl)butanoic acid

C37H55N9O11 (801.402084)


   

(2s,4r)-4-[({2-[(1r,3r)-1-(acetyloxy)-3-[(2s,3s)-n-[(acetyloxy)methyl]-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-5-(4-hydroxyphenyl)-2-methylpentanoic acid

(2s,4r)-4-[({2-[(1r,3r)-1-(acetyloxy)-3-[(2s,3s)-n-[(acetyloxy)methyl]-2-({hydroxy[(2r)-1-methylpiperidin-2-yl]methylidene}amino)-3-methylpentanamido]-4-methylpentyl]-1,3-thiazol-4-yl}(hydroxy)methylidene)amino]-5-(4-hydroxyphenyl)-2-methylpentanoic acid

C40H59N5O10S (801.3982434000001)


   

(3s,6s,9s,15s,18s,21s,24s)-3,18-dibenzyl-6,21-bis[(2r)-butan-2-yl]-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

(3s,6s,9s,15s,18s,21s,24s)-3,18-dibenzyl-6,21-bis[(2r)-butan-2-yl]-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C43H59N7O8 (801.4424894000001)


   

(3s,6s,9s,15s,18s,21s,24s)-3,18-dibenzyl-6,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

(3s,6s,9s,15s,18s,21s,24s)-3,18-dibenzyl-6,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C43H59N7O8 (801.4424894000001)


   

3,18-dibenzyl-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-6,21-bis(sec-butyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

3,18-dibenzyl-5,8,17,20,23-pentahydroxy-15-(hydroxymethyl)-6,21-bis(sec-butyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C43H59N7O8 (801.4424894000001)


   

10-{hydroxy[6-({1-[(1-hydroxy-2-oxoazepan-3-yl)-c-hydroxycarbonimidoyl]-1-methylbutan-2-yl}oxy)-5-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

10-{hydroxy[6-({1-[(1-hydroxy-2-oxoazepan-3-yl)-c-hydroxycarbonimidoyl]-1-methylbutan-2-yl}oxy)-5-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

C40H59N5O12 (801.4160014)


   

(9z)-10-{hydroxy[(5s)-6-{[(1r,2s)-1-{[(3r)-1-hydroxy-2-oxoazepan-3-yl]-c-hydroxycarbonimidoyl}-1-methylbutan-2-yl]oxy}-5-({hydroxy[(4r,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

(9z)-10-{hydroxy[(5s)-6-{[(1r,2s)-1-{[(3r)-1-hydroxy-2-oxoazepan-3-yl]-c-hydroxycarbonimidoyl}-1-methylbutan-2-yl]oxy}-5-({hydroxy[(4r,5s)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

C40H59N5O12 (801.4160014)


   

(9z)-10-{hydroxy[6-({1-[(1-hydroxy-2-oxoazepan-3-yl)-c-hydroxycarbonimidoyl]-1-methylbutan-2-yl}oxy)-5-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

(9z)-10-{hydroxy[6-({1-[(1-hydroxy-2-oxoazepan-3-yl)-c-hydroxycarbonimidoyl]-1-methylbutan-2-yl}oxy)-5-({hydroxy[2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)-6-oxohexyl]carbamoyl}dec-9-enoic acid

C40H59N5O12 (801.4160014)


   

(2r)-2-({[(2s)-1-[(2s)-2-[(2r)-2-{[(2s,3s)-10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

(2r)-2-({[(2s)-1-[(2s)-2-[(2r)-2-{[(2s,3s)-10-chloro-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C41H60ClN5O9 (801.407934)