Exact Mass: 796.4431248000001

Exact Mass Matches: 796.4431248000001

Found 253 metabolites which its exact mass value is equals to given mass value 796.4431248000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Soyasaponin III

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4Ar,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4-dihydroxy-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid

C42H68O14 (796.4608828)


Soyasaponin III is a triterpenoid saponin that is composed of soyasapogenol B having a beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a hepatoprotective agent and a prodrug. It is a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin III(1-). (3beta,4beta,21alpha)-21,23-dihydroxyolean-12-en-3-yl-2-O-beta-D-galactopyranosyl-beta-D-Glucopyranosiduronic acid is a natural product found in Crotalaria albida, Lupinus oreophilus, and other organisms with data available. Azukisaponin II is found in pulses. Azukisaponin II is isolated from seeds of azuki bean (Vigna angularis) and alfalfa (Medicago sativa). Constituent of soya bean Glycine max. Soyasaponin III is found in soy bean and pulses.

   

Diginatin

3beta-[2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyloxy]-12beta,14,16beta-trihydroxy-5beta-card-20(22)-enolide

C41H64O15 (796.4244994)


   

Jujubasaponin VI

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{[18-(2-hydroxypropan-2-yl)-2,6,6,10,16-pentamethyl-17,21,23-trioxaheptacyclo[20.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²².0¹⁶,²⁰]pentacosan-7-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H68O14 (796.4608828)


Jujubasaponin VI is found in fruits. Jujubasaponin VI is a constituent of Zizyphus jujuba (Chinese date). Constituent of Zizyphus jujuba (Chinese date). Jujubasaponin VI is found in fruits.

   

Mocimycin

N-[(2Z,4E)-7-{3,4-dihydroxy-5-[(1Z,3E,5Z)-7-(4-hydroxy-2-oxo-1,2-dihydropyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trien-1-yl]oxolan-2-yl}-6-methoxy-5-methylocta-2,4-dien-1-yl]-2-{2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3Z)-penta-1,3-dien-1-yl]oxan-2-yl}butanamide

C43H60N2O12 (796.414604)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Animal growth promoter used in poultry breedin

   

Mabiogenin 3-[rhamnosyl-(1->6)-glucoside]

(1R,2R,3S,5R,6R,9S,10R,14R,17S)-3-hydroxy-1,2,5,14,18,18-hexamethyl-6-(3-methylbut-2-en-1-yl)-17-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4,7-dioxapentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-8-one

C42H68O14 (796.4608828)


Mabiogenin 3-[rhamnosyl-(1->6)-glucoside] is found in beverages. Mabiogenin 3-[rhamnosyl-(1->6)-glucoside] is a constituent of Colubrina elliptica (mabi). Constituent of Colubrina elliptica (mabi). Mabiogenin 3-[rhamnosyl-(1->6)-glucoside] is found in beverages.

   

Saponin E

7-[3,5-Dihydroxy-6-(hydroxymethyl)-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxy-2-[3-(2-hydroxy-4-methylpent-3-enyl)-3-methyloxiran-2-yl]-4b,8,8,10a-tetramethylspiro[2,3,4,4a,5,6,7,8a,9,10-decahydrophenanthrene-1,4-oxolane]-2-one

C42H68O14 (796.4608828)


Saponin E is a constituent of Hovenia dulcis (raisin tree) Constituent of Hovenia dulcis (raisin tree)

   

PA(20:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:1(11Z)), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:2(11Z,14Z)/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/PGE2), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/20:2(11Z,14Z))

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGE2/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/20:2(11Z,14Z)), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:2(11Z,14Z)/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/PGD2), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/20:2(11Z,14Z))

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGD2/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/20:2(11Z,14Z)), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:2(11Z,14Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:2(11Z,14Z)), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(5Z,8Z,11Z)/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)/PGF2alpha), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/20:3(5Z,8Z,11Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGF2alpha/20:3(5Z,8Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(5Z,8Z,11Z)/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)/PGE1), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/20:3(5Z,8Z,11Z))

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGE1/20:3(5Z,8Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(5Z,8Z,11Z)/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)/PGD1), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/20:3(5Z,8Z,11Z))

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGD1/20:3(5Z,8Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(8Z,11Z,14Z)/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)/PGF2alpha), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/20:3(8Z,11Z,14Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGF2alpha/20:3(8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(8Z,11Z,14Z)/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)/PGE1), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/20:3(8Z,11Z,14Z))

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGE1/20:3(8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:3(8Z,11Z,14Z)/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)/PGD1), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/20:3(8Z,11Z,14Z))

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGD1/20:3(8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:4(5Z,8Z,11Z,14Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/PGF1alpha), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGF1alpha/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(20:4(8Z,11Z,14Z,17Z)/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/PGF1alpha), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H73O11P (796.4890237999999)


PA(PGF1alpha/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H73O11P (796.4890237999999)


PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

Bacopaside N1

Bacopaside N1

C42H68O14 (796.4608828)


Bacopaside N1 is a natural product found in Bacopa monnieri with data available.

   
   
   
   
   
   
   
   

Longispinogenin 3-O-beta-D-glucuronopyranoside

Longispinogenin 3-O-beta-D-glucuronopyranoside

C42H68O14 (796.4608828)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C41H64O15 (796.4244994)


   

astraversianin VI|cyclosieversioside A|cyclosieversioside C|cyclosiversioside C

astraversianin VI|cyclosieversioside A|cyclosieversioside C|cyclosiversioside C

C42H68O14 (796.4608828)


   
   

anhuienoside A|hederagenin 23-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside

anhuienoside A|hederagenin 23-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   

cyclosieversioside C

cyclosieversioside C

C42H68O14 (796.4608828)


   

3-O-(beta-D-glucopyranosyl)-28-O-(beta-D-glucopyranosyl)hederagenin|3-O-beta-D-glucopyranosyl hederagenin-28-O-beta-D-glucopyranosyl ester|3-O-beta-D-glucopyranosyl-hederagenin-28-O-beta-D-glucopyranosyl ester|beta-D-glucopyranosyl (3beta,4alpha)-3-(beta-D-glucopyranosyloxy)olean-12-en-28-oate|lucyoside E

3-O-(beta-D-glucopyranosyl)-28-O-(beta-D-glucopyranosyl)hederagenin|3-O-beta-D-glucopyranosyl hederagenin-28-O-beta-D-glucopyranosyl ester|3-O-beta-D-glucopyranosyl-hederagenin-28-O-beta-D-glucopyranosyl ester|beta-D-glucopyranosyl (3beta,4alpha)-3-(beta-D-glucopyranosyloxy)olean-12-en-28-oate|lucyoside E

C42H68O14 (796.4608828)


   
   
   

olean-3alpha,22beta-diol-12-en-28-oic acid 3-O-beta-D-glucopyranosyl(1->4)-beta-D-glucopyranoside

olean-3alpha,22beta-diol-12-en-28-oic acid 3-O-beta-D-glucopyranosyl(1->4)-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   

saponin E

7-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-[3-(2-hydroxy-4-methylpent-3-en-1-yl)-3-methyloxiran-2-yl]-4b,8,8,10a-tetramethyl-dodecahydro-2H-spiro[oxolane-3,1-phenanthrene]-5-one

C42H68O14 (796.4608828)


   

23-O-beta-D-allopyranosyl-5beta,19-epoxycucurbita-6,24-dien-3beta,22xi,23xi-triol 23-O-beta-D-allopyranoside|karaviloside X|momordicoside N

23-O-beta-D-allopyranosyl-5beta,19-epoxycucurbita-6,24-dien-3beta,22xi,23xi-triol 23-O-beta-D-allopyranoside|karaviloside X|momordicoside N

C42H68O14 (796.4608828)


   
   
   
   

Soyasaponin III

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4Ar,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4-dihydroxy-5-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid

C42H68O14 (796.4608828)


Soyasaponin III is a triterpenoid saponin that is composed of soyasapogenol B having a beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a hepatoprotective agent and a prodrug. It is a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin III(1-). (3beta,4beta,21alpha)-21,23-dihydroxyolean-12-en-3-yl-2-O-beta-D-galactopyranosyl-beta-D-Glucopyranosiduronic acid is a natural product found in Crotalaria albida, Lupinus oreophilus, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having a beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage.

   

Bottromycin B|bottromycin-B1|N-(2,2-dimethyl-propionyl)-beta-methyl-valyl->valyl->prolinimidoyl->glycyl->beta-methyl-phenylalanyl->beta-thiazol-2-yl-beta-alanine methyl ester

Bottromycin B|bottromycin-B1|N-(2,2-dimethyl-propionyl)-beta-methyl-valyl->valyl->prolinimidoyl->glycyl->beta-methyl-phenylalanyl->beta-thiazol-2-yl-beta-alanine methyl ester

C40H60N8O7S (796.4305449999999)


   

3beta,24-dihydroxyhopan-28,22-olide 3-O-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranoside|diplazioside V

3beta,24-dihydroxyhopan-28,22-olide 3-O-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranoside|diplazioside V

C42H68O14 (796.4608828)


   
   

hederagenin-3-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranoside|swartziadioside

hederagenin-3-O-beta-D-glucopyranosyl-(1->3)-beta-D-glucopyranoside|swartziadioside

C42H68O14 (796.4608828)


   

hederagenin 3-O-beta-D-glucopyranosyl-(1-2)-beta-D-glucopyranoside

hederagenin 3-O-beta-D-glucopyranosyl-(1-2)-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   

3beta-[beta-glucopyranosyl-(1->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione|pandaroside A

3beta-[beta-glucopyranosyl-(1->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione|pandaroside A

C41H64O15 (796.4244994)


   

2beta-hydroxyoleanolic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

2beta-hydroxyoleanolic acid 3-O-beta-D-glucopyranosyl-28-O-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   

3-<6)-beta-D-glucopyranosyl>-oxy>-27-hydroxyolean-12-en-28-oic acid|3-{[O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl]-oxy}-27-hydroxyolean-12-en-28-oic acid

3-<6)-beta-D-glucopyranosyl>-oxy>-27-hydroxyolean-12-en-28-oic acid|3-{[O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl]-oxy}-27-hydroxyolean-12-en-28-oic acid

C42H68O14 (796.4608828)


   
   
   

3-O-beta-D-Glucopyranosyl-(25-O-beta-D-glucopyranosyl)-gratiogenine|gratioside

3-O-beta-D-Glucopyranosyl-(25-O-beta-D-glucopyranosyl)-gratiogenine|gratioside

C42H68O14 (796.4608828)


   

Eclalbasaponin IV

(4Ar,5R,6aS,6bR,12aR,14bS)-10-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H68O14 (796.4608828)


   

3-O-[alpha-L-arabinopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,11alpha,24,30-tetrahydroxyolean-12-en-22-one|sarosiensin II

3-O-[alpha-L-arabinopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,11alpha,24,30-tetrahydroxyolean-12-en-22-one|sarosiensin II

C41H64O15 (796.4244994)


   
   
   

3-O-beta-d-glucopyranosyl-29-O-beta-d-glucopyranosyl-3beta,16beta,29-trihydroxyolean-12-en-23-al

3-O-beta-d-glucopyranosyl-29-O-beta-d-glucopyranosyl-3beta,16beta,29-trihydroxyolean-12-en-23-al

C42H68O14 (796.4608828)


   

3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]-3beta,6alpha,25-trihydroxy-20(R),24(S)-epoxycycloartane-16-one

3-O-[alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranosyl]-3beta,6alpha,25-trihydroxy-20(R),24(S)-epoxycycloartane-16-one

C42H68O14 (796.4608828)


   

3-O-[beta-D-glucuronic acid pyranosyl]-29-hydroxyoleanolic acid-28-O-[beta-D-glucopyranosyl]ester|zygophyloside K

3-O-[beta-D-glucuronic acid pyranosyl]-29-hydroxyoleanolic acid-28-O-[beta-D-glucopyranosyl]ester|zygophyloside K

C41H64O15 (796.4244994)


   
   
   

dipsacussaponin A|hederagenin 28-O-beta-D-gentiobiosyl ester|hederagenin 28-O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl ester

dipsacussaponin A|hederagenin 28-O-beta-D-gentiobiosyl ester|hederagenin 28-O-beta-D-glucopyranosyl-(1->6)-O-beta-D-glucopyranosyl ester

C42H68O14 (796.4608828)


   

(3beta,4beta,16alpha)-17-carboxy-16,24-dihydroxy-28-norolean-12-en-3-yl 4-O-beta-D-xylopyranosyl-beta-D-glucopyranosiduronic acid

(3beta,4beta,16alpha)-17-carboxy-16,24-dihydroxy-28-norolean-12-en-3-yl 4-O-beta-D-xylopyranosyl-beta-D-glucopyranosiduronic acid

C41H64O15 (796.4244994)


   

(3beta,14beta,17beta)-3,14,17-trihydroxy-21-methoxypregn-5-en-20-one-3-O-beta-oleandropyranosyl-(1->4)-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside C

(3beta,14beta,17beta)-3,14,17-trihydroxy-21-methoxypregn-5-en-20-one-3-O-beta-oleandropyranosyl-(1->4)-O-beta-cymaropyranosyl-(1->4)-O-beta-digitoxopyranoside|perisepiumoside C

C42H68O14 (796.4608828)


   
   

3beta,6beta,16beta-trihydroxyolean-12-en-23-al 3-O-beta-glucopyranosyl-16-O-beta-glucopyranoside

3beta,6beta,16beta-trihydroxyolean-12-en-23-al 3-O-beta-glucopyranosyl-16-O-beta-glucopyranoside

C42H68O14 (796.4608828)


   

28-O-alpha-L-rhamnopyranosyl(1->2)-beta-D-glucopyranoside tormentic acid ester

28-O-alpha-L-rhamnopyranosyl(1->2)-beta-D-glucopyranoside tormentic acid ester

C42H68O14 (796.4608828)


   

3-O-<3-(O-beta-D-galactopyranosyl)-beta-D-glucopyranosyl>2beta-hydroxyoleanolic acid|3-O-[3-(O-beta-D-galactopyranosyl)-beta-D-glucopyranosyl]2beta-hydroxyoleanolic acid

3-O-<3-(O-beta-D-galactopyranosyl)-beta-D-glucopyranosyl>2beta-hydroxyoleanolic acid|3-O-[3-(O-beta-D-galactopyranosyl)-beta-D-glucopyranosyl]2beta-hydroxyoleanolic acid

C42H68O14 (796.4608828)


   
   
   
   

isolineolon 3-O-beta-D-olenadropyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside

isolineolon 3-O-beta-D-olenadropyranosyl-(1->4)-beta-D-cymaropyranosyl-(1->4)-beta-D-cymaropyranoside

C42H68O14 (796.4608828)


   
   
   

alternoside XVIII|longispinogenin 3-O-beta-D-glucuronopyranosyl-28-O-beta-D-glucopyranoside

alternoside XVIII|longispinogenin 3-O-beta-D-glucuronopyranosyl-28-O-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   
   

(25S)-17alpha,27-dihydroxyspirost-5-en-3beta-yl (4-O-acetyl-alpha-L-rhamnopyranosyl)-(1->2)-beta-D-glucopyranoside

(25S)-17alpha,27-dihydroxyspirost-5-en-3beta-yl (4-O-acetyl-alpha-L-rhamnopyranosyl)-(1->2)-beta-D-glucopyranoside

C41H64O15 (796.4244994)


   
   

(3R,5beta,16S,17S,20R,22S,23S,24S,25S)-16,23:16,27:22,25-triepoxy-17-hydroxystigmast-7-en-3-yl beta-D-glucopyranosyl-D-glucopyranoside|ajugasalicioside B

(3R,5beta,16S,17S,20R,22S,23S,24S,25S)-16,23:16,27:22,25-triepoxy-17-hydroxystigmast-7-en-3-yl beta-D-glucopyranosyl-D-glucopyranoside|ajugasalicioside B

C41H64O15 (796.4244994)


   

WUX1YPQ76E

(4aS,6aR,6aR,6bR,8aR,10S,12aR,14bS)-10-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-6a-[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxymethyl]-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C48H60O10 (796.418626)


Myriceric acid C is a natural product found in Abelmoschus ficulneus, Hibiscus taiwanensis, and other organisms with data available.

   

Eclalbasaponin I

[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aR,5R,6aR,6aS,6bR,8aR,10S,12aR,14bS)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

C42H68O14 (796.4608828)


Eclalbasaponin I is a natural product found in Eclipta alba and Eclipta prostrata with data available. Eclalbasaponin I is isolated from Eclipta prostrata L with antitumor activity. Eclalbasaponin I inhibits the proliferation of hepatoma cell smmc-7721 with an IC50 value of 111.1703 μg/ml[1]. Eclalbasaponin I is isolated from Eclipta prostrata L with antitumor activity. Eclalbasaponin I inhibits the proliferation of hepatoma cell smmc-7721 with an IC50 value of 111.1703 μg/ml[1].

   

Bacopaside N2

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5R,6R)-3,5-Dihydroxy-2-(hydroxymethyl)-6-[[(1R,2S,7R,10S,16R,17S,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-17-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H68O14 (796.4608828)


   

3-Gal(1-2)GluA Soyasapogenol B

3-Gal(1-2)GluA Soyasapogenol B

C42H68O14 (796.4608828)


   

3-Glu(1-2)GluA Soyasapogenol B

3-Glu(1-2)GluA Soyasapogenol B

C42H68O14 (796.4608828)


   

C43H60N2O12_(2S)-N-[(2E,4E,6S,7R)-7-{(3S,4R)-3,4-Dihydroxy-5-[(1E,3E,5E)-7-(4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl)-6-methyl-7-oxo-1,3,5-heptatrien-1-yl]tetrahydro-2-furanyl}-6-methoxy-5-methyl-2,4-octadien-1-yl]-2-{(2R,3R,4R,6S)-2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-1,3-pentadien-1-yl]tetrahydro-2H-pyran-2-yl}butanamide

NCGC00386087-01_C43H60N2O12_(2S)-N-[(2E,4E,6S,7R)-7-{(3S,4R)-3,4-Dihydroxy-5-[(1E,3E,5E)-7-(4-hydroxy-2-oxo-1,2-dihydro-3-pyridinyl)-6-methyl-7-oxo-1,3,5-heptatrien-1-yl]tetrahydro-2-furanyl}-6-methoxy-5-methyl-2,4-octadien-1-yl]-2-{(2R,3R,4R,6S)-2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-1,3-pentadien-1-yl]tetrahydro-2H-pyran-2-yl}butanamide

C43H60N2O12 (796.414604)


   

C41H64O15_1-O-[(3beta,5xi,9xi,16alpha)-16,23-Dihydroxy-23,28-dioxo-3-(beta-D-xylopyranosyloxy)olean-12-en-28-yl]-beta-D-glucopyranose

NCGC00384587-01_C41H64O15_1-O-[(3beta,5xi,9xi,16alpha)-16,23-Dihydroxy-23,28-dioxo-3-(beta-D-xylopyranosyloxy)olean-12-en-28-yl]-beta-D-glucopyranose

C41H64O15 (796.4244994)


   

C42H68O14_(3beta,5xi,9xi)-3-{[2-O-(beta-D-Glucopyranosyl)-beta-D-glucopyranosyl]oxy}-23-hydroxyolean-12-en-28-oic acid

NCGC00385302-01_C42H68O14_(3beta,5xi,9xi)-3-{[2-O-(beta-D-Glucopyranosyl)-beta-D-glucopyranosyl]oxy}-23-hydroxyolean-12-en-28-oic acid

C42H68O14 (796.4608828)


   

C41H64O15_1-O-[(2beta,3beta,5xi,9xi,18xi)-2,23-Dihydroxy-28,29-dioxo-3-(beta-D-xylopyranosyloxy)olean-12-en-28-yl]-beta-D-glucopyranose

NCGC00381089-01_C41H64O15_1-O-[(2beta,3beta,5xi,9xi,18xi)-2,23-Dihydroxy-28,29-dioxo-3-(beta-D-xylopyranosyloxy)olean-12-en-28-yl]-beta-D-glucopyranose

C41H64O15 (796.4244994)


   

Soyasapogenol B base + O-HexA-Hex

Soyasapogenol B base + O-HexA-Hex

C42H68O14 (796.4608828)


Annotation level-3

   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

C41H64O15 (796.4244994)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_96.1\\%

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_96.1\\%

C41H64O15 (796.4244994)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_81.6\\%

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_81.6\\%

C41H64O15 (796.4244994)


   

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

(3S,4S,6aR,6bS,8R,8aR,12aS,14bR)-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

C41H64O15 (796.4244994)


   

Pandaroside A

3beta-[beta-glucopyranosyl-(1-2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione

C41H64O15 (796.4244994)


   

Mocimycin

N-[(2Z,4E)-7-{3,4-dihydroxy-5-[(1Z,3E,5Z)-7-(4-hydroxy-2-oxo-1,2-dihydropyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trien-1-yl]oxolan-2-yl}-6-methoxy-5-methylocta-2,4-dien-1-yl]-2-{2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3Z)-penta-1,3-dien-1-yl]oxan-2-yl}butanamide

C43H60N2O12 (796.414604)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic

   

Mabioside c?

3-hydroxy-1,2,5,14,18,18-hexamethyl-6-(3-methylbut-2-en-1-yl)-17-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4,7-dioxapentacyclo[11.8.0.0^{2,10}.0^{5,9}.0^{14,19}]henicosan-8-one

C42H68O14 (796.4608828)


   

Jujubasaponin VI

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{[18-(2-hydroxypropan-2-yl)-2,6,6,10,16-pentamethyl-17,21,23-trioxaheptacyclo[20.2.1.0^{1,14}.0^{2,11}.0^{5,10}.0^{15,22}.0^{16,20}]pentacosan-7-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H68O14 (796.4608828)


   

PKDdiA-PI

1-hexadecanoyl-2-(9-oxo-11-carboxy-10E-undecenoyl)-sn-glycero-3-phospho-(1-myo-inositol)

C37H65O16P (796.401002)


   

2-[3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethanol,dodecyl hydrogen sulfate,dodecyl sulfate

2-[3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-5-yl]ethanol,dodecyl hydrogen sulfate,dodecyl sulfate

C36H68N4O9S3 (796.4148198)


   

Dipsacussaponin A

Dipsacussaponin A

C42H68O14 (796.4608828)


A triterpenoid saponin that is the disaccharide derivative of hederagenin. It has been isolated from the stem bark of Kalopanax pictus.

   

Clethroidoside H

Clethroidoside H

C42H68O14 (796.4608828)


A triterpenoid saponin that is (2alpha,3beta,21beta)-ursa-9(11),12-diene-2,3,21,30-tetrol attached to beta-D-glucopyranosyl residues at positions 21 and 30 respectively via glycosidic linkages. It has been isolated from the aerial parts of Lysimachia clethroides.

   

(1R,3S,3aR,5aS,5bS,6S,7aR,9S,11aS,13aR,13bR)-3a-formyl-1,6-dihydroxy-5a,8,8,11a,13a-pentamethyl-3-(propan-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,9,10,11,11a,13,13a,13b-octadecahydro-1H-cyclopenta[a]chrysen-9-yl 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside

(1R,3S,3aR,5aS,5bS,6S,7aR,9S,11aS,13aR,13bR)-3a-formyl-1,6-dihydroxy-5a,8,8,11a,13a-pentamethyl-3-(propan-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,9,10,11,11a,13,13a,13b-octadecahydro-1H-cyclopenta[a]chrysen-9-yl 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside

C42H68O14 (796.4608828)


   

Dianchinenoside B, >=95\\% (LC/MS-ELSD)

Dianchinenoside B, >=95\\% (LC/MS-ELSD)

C41H64O15 (796.4244994)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PA(20:4(5Z,8Z,11Z,14Z)/PGF1alpha)

PA(20:4(5Z,8Z,11Z,14Z)/PGF1alpha)

C43H73O11P (796.4890237999999)


   

PA(PGF1alpha/20:4(5Z,8Z,11Z,14Z))

PA(PGF1alpha/20:4(5Z,8Z,11Z,14Z))

C43H73O11P (796.4890237999999)


   

PA(20:4(8Z,11Z,14Z,17Z)/PGF1alpha)

PA(20:4(8Z,11Z,14Z,17Z)/PGF1alpha)

C43H73O11P (796.4890237999999)


   

PA(PGF1alpha/20:4(8Z,11Z,14Z,17Z))

PA(PGF1alpha/20:4(8Z,11Z,14Z,17Z))

C43H73O11P (796.4890237999999)


   

PG(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(a-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C43H73O11P (796.4890237999999)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/a-15:0)

C43H73O11P (796.4890237999999)


   

PG(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(a-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/a-15:0)

C43H73O11P (796.4890237999999)


   

PG(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(a-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/a-15:0)

C43H73O11P (796.4890237999999)


   

PG(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(a-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/a-15:0)

C43H73O11P (796.4890237999999)


   

PG(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(a-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C43H73O11P (796.4890237999999)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/a-15:0)

C43H73O11P (796.4890237999999)


   

PG(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PG(i-15:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C43H73O11P (796.4890237999999)


   

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

PG(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-15:0)

C43H73O11P (796.4890237999999)


   

PG(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PG(i-15:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

PG(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-15:0)

C43H73O11P (796.4890237999999)


   

PG(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PG(i-15:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

PG(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-15:0)

C43H73O11P (796.4890237999999)


   

PG(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PG(i-15:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C43H73O11P (796.4890237999999)


   

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

PG(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-15:0)

C43H73O11P (796.4890237999999)


   

PG(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PG(i-15:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C43H73O11P (796.4890237999999)


   

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

PG(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-15:0)

C43H73O11P (796.4890237999999)


   

PA(20:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(20:1(11Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C43H73O11P (796.4890237999999)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:1(11Z))

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/20:1(11Z))

C43H73O11P (796.4890237999999)


   

PA(20:2(11Z,14Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(20:2(11Z,14Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C43H73O11P (796.4890237999999)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:2(11Z,14Z))

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/20:2(11Z,14Z))

C43H73O11P (796.4890237999999)


   

brachystemin C

brachystemin C

C39H56N8O10 (796.4119196)


A natural product found in Brachystemma calycinum.

   

cyclo[N(Me)Leu-D-OAla-N(Me)Leu-D-OAla-N(Me)Leu-D-OAla-N(Me)Leu-D-OAla]

cyclo[N(Me)Leu-D-OAla-N(Me)Leu-D-OAla-N(Me)Leu-D-OAla-N(Me)Leu-D-OAla]

C40H68N4O12 (796.4833488)


   

N-(1-phenylpropan-2-yl)ormamide

N-(1-phenylpropan-2-yl)ormamide

C45H56N4O9 (796.4047086)


   
   

N-[(2Z,4E)-7-[3,4-dihydroxy-5-[(1Z,3E,5E)-7-(4-hydroxy-2-oxo-1H-pyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trienyl]oxolan-2-yl]-6-methoxy-5-methylocta-2,4-dienyl]-2-[2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-penta-1,3-dienyl]oxan-2-yl]butanamide

N-[(2Z,4E)-7-[3,4-dihydroxy-5-[(1Z,3E,5E)-7-(4-hydroxy-2-oxo-1H-pyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trienyl]oxolan-2-yl]-6-methoxy-5-methylocta-2,4-dienyl]-2-[2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-penta-1,3-dienyl]oxan-2-yl]butanamide

C43H60N2O12 (796.414604)


   
   
   
   
   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H64O15 (796.4244994)


   

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H65O13P (796.416257)


   

[(2S,3S,6S)-6-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C41H64O15 (796.4244994)


   

[(2S,3S,6S)-6-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

2-[[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H71NO8P+ (796.4917035999999)


   

[(2S,3S,6S)-6-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C41H65O13P (796.416257)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C41H65O13P (796.416257)


   

2-[[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H71NO8P+ (796.4917035999999)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C41H65O13P (796.416257)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C42H68O12S (796.4431248000001)


   

[1-[(E)-dec-4-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(E)-dec-4-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C41H64O15 (796.4244994)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C41H65O13P (796.416257)


   

Mabiogenin 3-[rhamnosyl-(1->6)-glucoside]

Mabiogenin 3-[rhamnosyl-(1->6)-glucoside]

C42H68O14 (796.4608828)


   

rubiarboside G 28-al

rubiarboside G 28-al

C42H68O14 (796.4608828)


A triterpenoid saponin with an arborinane-type terpenoid as the aglycone. It has been isolated from the roots of Rubia yunnanensis.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

FSLLRY-NH2

FSLLRY-NH2

C39H60N10O8 (796.4595360000001)


FSLLRY-NH2 is a protease-activated receptor 2 (PAR2) inhibitor[1].