Exact Mass: 791.4853

Exact Mass Matches: 791.4853

Found 326 metabolites which its exact mass value is equals to given mass value 791.4853, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Ascomycin

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R ,19R,26aS)-8-Ethyl-5,6,8,11,12,13,14,15,16,17,18,1 9,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1E )-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetrameth yl-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)tetrone

C43H69NO12 (791.482)


Ascomycin is a macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. It has a role as an immunosuppressive agent, an antifungal agent and a bacterial metabolite. It is a macrolide, an ether, a lactol and a secondary alcohol. Ascomycin is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and Streptomyces ascomycinicus with data available. A macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Ascomycin (Immunomycin; FR-900520; FK520) is an ethyl analog of Tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin is also a macrocyclic polyketide antibiotic with multiple biological activities such as anti-malarial, anti-fungal and anti-spasmodic. Ascomycin prevents graft rejection and has potential for varying skin ailments research[1][2].

   

ascomycin

17-ethyl-1,14-dihydroxy-12-[1-(4-hydroxy-3-methoxycyclohexyl)prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H69NO12 (791.482)


   

PE(15:0/6 keto-PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO12P (791.4948)


PE(15:0/6 keto-PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/6 keto-PGF1alpha), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(6 keto-PGF1alpha/15:0)

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO12P (791.4948)


PE(6 keto-PGF1alpha/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(6 keto-PGF1alpha/15:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/TXB2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO12P (791.4948)


PE(15:0/TXB2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/TXB2), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(TXB2/15:0)

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO12P (791.4948)


PE(TXB2/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(TXB2/15:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(16:0/PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-(hexadecanoyloxy)propoxy]phosphinic acid

C41H78NO11P (791.5312)


PE(16:0/PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(16:0/PGF1alpha), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGF1alpha/16:0)

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-(hexadecanoyloxy)propoxy]phosphinic acid

C41H78NO11P (791.5312)


PE(PGF1alpha/16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF1alpha/16:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(6Z,9Z,12Z)/PGJ2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(18:3(6Z,9Z,12Z)/PGJ2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(6Z,9Z,12Z)/PGJ2), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGJ2/18:3(6Z,9Z,12Z))

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(PGJ2/18:3(6Z,9Z,12Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGJ2/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(9Z,12Z,15Z)/PGJ2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(18:3(9Z,12Z,15Z)/PGJ2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(9Z,12Z,15Z)/PGJ2), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGJ2/18:3(9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(PGJ2/18:3(9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGJ2/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

(2-aminoethoxy)[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(18:4(6Z,9Z,12Z,15Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

(2-aminoethoxy)[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

(2-aminoethoxy)[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(15:0/5-iso PGF2VI)

(2S)-2-amino-3-({[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(pentadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C39H70NO13P (791.4585)


PS(15:0/5-iso PGF2VI) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(15:0/5-iso PGF2VI), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(5-iso PGF2VI/15:0)

(2S)-2-amino-3-({[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(pentadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C39H70NO13P (791.4585)


PS(5-iso PGF2VI/15:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(5-iso PGF2VI/15:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(16:1(9Z)/18:1(12Z)-2OH(9,10))

(2S)-2-amino-3-({[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H74NO12P (791.4948)


PS(16:1(9Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(16:1(9Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:1(12Z)-2OH(9,10)/16:1(9Z))

(2S)-2-amino-3-({[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H74NO12P (791.4948)


PS(18:1(12Z)-2OH(9,10)/16:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:1(12Z)-2OH(9,10)/16:1(9Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(9,3)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(9,3)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(9,3)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(9,3)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(9,3)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(DiMe(9,3)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}propoxy]phosphinic acid

C43H70NO10P (791.4737)


PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(9,3)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

(2-{[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z)), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

(2-{[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

(2-{[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z)), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

(2-{[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

(2-{[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z)), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

(2-{[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

(2-{[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z)), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

trimethyl(2-{[(2R)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

trimethyl(2-{[(2R)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z)), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C44H74NO9P (791.5101)


PC(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

(2-{[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

(2-{[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

(2-{[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

(2-{[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C44H74NO9P (791.5101)


PC(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Conglutinin

2-formamido-3-methyl-N-[20-methyl-3,16-bis(2-methylpropyl)-2,5,12,15,18,22-hexaoxo-13-(propan-2-yl)-21-oxa-1,4,10,11,14,17,27-heptaazatricyclo[21.4.0.0⁶,¹¹]heptacosan-19-yl]pentanamide

C38H65N9O9 (791.4905)


Isolated from bovine serum. Ca2(+)-dependent lectin. Conglutinin is a collectin protein. Conglutinin is found in animal foods. Isolated from bovine serum. Ca2(+)-dependent lectin

   

Schizopeptin 791

Schizopeptin 791

C42H61N7O8 (791.4581)


   
   

Dereplicator Identification - Schizopeptin_791

Dereplicator Identification - Schizopeptin_791

C42H61N7O8 (791.4581)


   

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)

C41H78NO11P (791.5312)


   

DHOAA(AcO)-Val-Phe(NMe)-Pro-Phe(NMe)-Gly-OMe

DHOAA(AcO)-Val-Phe(NMe)-Pro-Phe(NMe)-Gly-OMe

C43H61N5O9 (791.4469)


   

PS(15:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z-pentadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphoserine

C43H70NO10P (791.4737)


   

PS(17:2(9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z,12Z-heptadecadienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C43H70NO10P (791.4737)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/17:2(9Z,12Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C43H70NO10P (791.4737)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:1(9Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C43H70NO10P (791.4737)


   

PS(P-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(1Z-hexadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphoserine

C44H74NO9P (791.5101)


   

PS 37:7

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C43H70NO10P (791.4737)


   

PS O-38:7

1-(1Z-hexadecenyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphoserine

C44H74NO9P (791.5101)


   

Fmoc-Lys(Pal-Glu-OtBu)-OH

Fmoc-Lys(Pal-Glu-OtBu)-OH

C46H69N3O8 (791.5084)


   

(31R)-8,12-diethylbacteriochlorophyll d

(31R)-8,12-diethylbacteriochlorophyll d

C49H59MgN4O4- (791.4387)


   

(31R)-8-ethyl-12-methylbacteriochlorophyll c

(31R)-8-ethyl-12-methylbacteriochlorophyll c

C49H59MgN4O4- (791.4387)


   

(2R,3S)-2-[[(3S,6S,9R,12S,15R)-3-benzyl-12-[(2S)-butan-2-yl]-6,7-dimethyl-2,5,8,11,14-pentaoxo-9-(2-phenylethyl)-1,4,7,10,13-pentazacyclononadec-15-yl]carbamoylamino]-3-methylpentanoic acid

(2R,3S)-2-[[(3S,6S,9R,12S,15R)-3-benzyl-12-[(2S)-butan-2-yl]-6,7-dimethyl-2,5,8,11,14-pentaoxo-9-(2-phenylethyl)-1,4,7,10,13-pentazacyclononadec-15-yl]carbamoylamino]-3-methylpentanoic acid

C42H61N7O8 (791.4581)


   

PE(16:0/PGF1alpha)

PE(16:0/PGF1alpha)

C41H78NO11P (791.5312)


   

PE(PGF1alpha/16:0)

PE(PGF1alpha/16:0)

C41H78NO11P (791.5312)


   

PE(15:0/6 keto-PGF1alpha)

PE(15:0/6 keto-PGF1alpha)

C40H74NO12P (791.4948)


   

PE(6 keto-PGF1alpha/15:0)

PE(6 keto-PGF1alpha/15:0)

C40H74NO12P (791.4948)


   
   
   

PS(15:0/5-iso PGF2VI)

PS(15:0/5-iso PGF2VI)

C39H70NO13P (791.4585)


   

PS(5-iso PGF2VI/15:0)

PS(5-iso PGF2VI/15:0)

C39H70NO13P (791.4585)


   

PE(18:3(6Z,9Z,12Z)/PGJ2)

PE(18:3(6Z,9Z,12Z)/PGJ2)

C43H70NO10P (791.4737)


   

PE(PGJ2/18:3(6Z,9Z,12Z))

PE(PGJ2/18:3(6Z,9Z,12Z))

C43H70NO10P (791.4737)


   

PE(18:3(9Z,12Z,15Z)/PGJ2)

PE(18:3(9Z,12Z,15Z)/PGJ2)

C43H70NO10P (791.4737)


   

PE(PGJ2/18:3(9Z,12Z,15Z))

PE(PGJ2/18:3(9Z,12Z,15Z))

C43H70NO10P (791.4737)


   

PS(16:1(9Z)/18:1(12Z)-2OH(9,10))

PS(16:1(9Z)/18:1(12Z)-2OH(9,10))

C40H74NO12P (791.4948)


   

PS(18:1(12Z)-2OH(9,10)/16:1(9Z))

PS(18:1(12Z)-2OH(9,10)/16:1(9Z))

C40H74NO12P (791.4948)


   

PE(DiMe(9,3)/20:4(6E,8Z,11Z,14Z)+=O(5))

PE(DiMe(9,3)/20:4(6E,8Z,11Z,14Z)+=O(5))

C43H70NO10P (791.4737)


   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(9,3))

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PE(DiMe(9,3)/20:4(5Z,8Z,11Z,13E)+=O(15))

PE(DiMe(9,3)/20:4(5Z,8Z,11Z,13E)+=O(15))

C43H70NO10P (791.4737)


   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(9,3))

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C43H70NO10P (791.4737)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(9,3))

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PE(DiMe(9,3)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C43H70NO10P (791.4737)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(9,3))

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PE(DiMe(9,3)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PE(DiMe(9,3)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C43H70NO10P (791.4737)


   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(9,3))

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PE(DiMe(9,3)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PE(DiMe(9,3)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C43H70NO10P (791.4737)


   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(9,3))

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/DiMe(9,3))

C43H70NO10P (791.4737)


   

PC(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PC(14:1(9Z)/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C44H74NO9P (791.5101)


   

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

PC(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/14:1(9Z))

C44H74NO9P (791.5101)


   

PC(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PC(14:1(9Z)/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C44H74NO9P (791.5101)


   

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

PC(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/14:1(9Z))

C44H74NO9P (791.5101)


   

PC(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PC(14:1(9Z)/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C44H74NO9P (791.5101)


   

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

PC(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/14:1(9Z))

C44H74NO9P (791.5101)


   

PC(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PC(14:1(9Z)/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C44H74NO9P (791.5101)


   

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

PC(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/14:1(9Z))

C44H74NO9P (791.5101)


   

PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PC(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C44H74NO9P (791.5101)


   

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

PC(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/14:1(9Z))

C44H74NO9P (791.5101)


   

PC(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

PC(18:4(6Z,9Z,12Z,15Z)/18:2(10E,12Z)+=O(9))

C44H74NO9P (791.5101)


   

PC(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

PC(18:2(10E,12Z)+=O(9)/18:4(6Z,9Z,12Z,15Z))

C44H74NO9P (791.5101)


   

PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

PC(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,11E)+=O(13))

C44H74NO9P (791.5101)


   

PC(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

PC(18:2(9Z,11E)+=O(13)/18:4(6Z,9Z,12Z,15Z))

C44H74NO9P (791.5101)


   

PC(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

PC(18:4(6Z,9Z,12Z,15Z)/18:3(10,12,15)-OH(9))

C44H74NO9P (791.5101)


   

PC(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

PC(18:3(10,12,15)-OH(9)/18:4(6Z,9Z,12Z,15Z))

C44H74NO9P (791.5101)


   

PC(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

PC(18:4(6Z,9Z,12Z,15Z)/18:3(9,11,15)-OH(13))

C44H74NO9P (791.5101)


   

PC(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

PC(18:3(9,11,15)-OH(13)/18:4(6Z,9Z,12Z,15Z))

C44H74NO9P (791.5101)


   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H70NO10P (791.4737)


   

PE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:4(6Z,9Z,12Z,15Z))

PE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:4(6Z,9Z,12Z,15Z))

C43H70NO10P (791.4737)


   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PE(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H70NO10P (791.4737)


   

PE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:4(6Z,9Z,12Z,15Z))

PE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:4(6Z,9Z,12Z,15Z))

C43H70NO10P (791.4737)


   

PE(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PE(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H70NO10P (791.4737)


   

PE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:4(6Z,9Z,12Z,15Z))

PE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:4(6Z,9Z,12Z,15Z))

C43H70NO10P (791.4737)


   

2-[[(2S,3R,4E,8Z)-2-[[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R,4E,8Z)-2-[[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O8P+ (791.5339)


   

2-[[(2S,3R,4E,8Z)-2-[[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R,4E,8Z)-2-[[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]amino]-3-hydroxyheptadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H76N2O8P+ (791.5339)


   

3-O-[alpha-L-arabinopyranosyl-(1->6)]-2-acetamido-2-deoxy-beta-D-glucopyranosyl oleanolic acid

3-O-[alpha-L-arabinopyranosyl-(1->6)]-2-acetamido-2-deoxy-beta-D-glucopyranosyl oleanolic acid

C43H69NO12 (791.482)


A natural product found in Albizia inundata.

   

1-O-(alpha-D-galactopyranosyl)-N-{11-[4-(trifluoromethyl)phenyl]undecanoyl}phytosphingosine

1-O-(alpha-D-galactopyranosyl)-N-{11-[4-(trifluoromethyl)phenyl]undecanoyl}phytosphingosine

C42H72F3NO9 (791.5159)


A glycophytoceramide having an alpha-D-galactopyranosyl residue at the O-1 position and an 11-(4-trifluoromethyl)undecanoyl group attached to the nitrogen.

   
   
   

SHexCer 16:2;2O/18:1;O

SHexCer 16:2;2O/18:1;O

C40H73NO12S (791.4853)


   

SHexCer 13:2;2O/21:1;O

SHexCer 13:2;2O/21:1;O

C40H73NO12S (791.4853)


   

SHexCer 16:3;2O/18:0;O

SHexCer 16:3;2O/18:0;O

C40H73NO12S (791.4853)


   

SHexCer 19:2;2O/15:1;O

SHexCer 19:2;2O/15:1;O

C40H73NO12S (791.4853)


   

SHexCer 20:2;2O/14:1;O

SHexCer 20:2;2O/14:1;O

C40H73NO12S (791.4853)


   

SHexCer 12:2;2O/22:1;O

SHexCer 12:2;2O/22:1;O

C40H73NO12S (791.4853)


   

SHexCer 18:1;2O/16:2;O

SHexCer 18:1;2O/16:2;O

C40H73NO12S (791.4853)


   

SHexCer 12:1;2O/22:2;O

SHexCer 12:1;2O/22:2;O

C40H73NO12S (791.4853)


   

SHexCer 19:3;2O/15:0;O

SHexCer 19:3;2O/15:0;O

C40H73NO12S (791.4853)


   

SHexCer 15:3;2O/19:0;O

SHexCer 15:3;2O/19:0;O

C40H73NO12S (791.4853)


   

SHexCer 14:1;2O/20:2;O

SHexCer 14:1;2O/20:2;O

C40H73NO12S (791.4853)


   

SHexCer 18:2;2O/16:1;O

SHexCer 18:2;2O/16:1;O

C40H73NO12S (791.4853)


   

SHexCer 15:2;2O/19:1;O

SHexCer 15:2;2O/19:1;O

C40H73NO12S (791.4853)


   

SHexCer 18:3;2O/16:0;O

SHexCer 18:3;2O/16:0;O

C40H73NO12S (791.4853)


   

SHexCer 20:3;2O/14:0;O

SHexCer 20:3;2O/14:0;O

C40H73NO12S (791.4853)


   

SHexCer 14:2;2O/20:1;O

SHexCer 14:2;2O/20:1;O

C40H73NO12S (791.4853)


   

SHexCer 21:3;2O/13:0;O

SHexCer 21:3;2O/13:0;O

C40H73NO12S (791.4853)


   

SHexCer 17:3;2O/17:0;O

SHexCer 17:3;2O/17:0;O

C40H73NO12S (791.4853)


   

SHexCer 22:2;2O/12:1;O

SHexCer 22:2;2O/12:1;O

C40H73NO12S (791.4853)


   

SHexCer 21:2;2O/13:1;O

SHexCer 21:2;2O/13:1;O

C40H73NO12S (791.4853)


   

SHexCer 22:3;2O/12:0;O

SHexCer 22:3;2O/12:0;O

C40H73NO12S (791.4853)


   

SHexCer 14:3;2O/20:0;O

SHexCer 14:3;2O/20:0;O

C40H73NO12S (791.4853)


   

SHexCer 10:1;2O/24:2;O

SHexCer 10:1;2O/24:2;O

C40H73NO12S (791.4853)


   

SHexCer 16:1;2O/18:2;O

SHexCer 16:1;2O/18:2;O

C40H73NO12S (791.4853)


   

Lnaps 24:7/N-13:0

Lnaps 24:7/N-13:0

C43H70NO10P (791.4737)


   

Lnaps 13:1/N-24:6

Lnaps 13:1/N-24:6

C43H70NO10P (791.4737)


   

Lnaps 11:0/N-26:7

Lnaps 11:0/N-26:7

C43H70NO10P (791.4737)


   

Lnaps 13:0/N-24:7

Lnaps 13:0/N-24:7

C43H70NO10P (791.4737)


   

Lnaps 26:7/N-11:0

Lnaps 26:7/N-11:0

C43H70NO10P (791.4737)


   

Lnaps 20:5/N-17:2

Lnaps 20:5/N-17:2

C43H70NO10P (791.4737)


   

Lnaps 15:1/N-22:6

Lnaps 15:1/N-22:6

C43H70NO10P (791.4737)


   

Lnaps 22:6/N-15:1

Lnaps 22:6/N-15:1

C43H70NO10P (791.4737)


   

Lnaps 24:6/N-13:1

Lnaps 24:6/N-13:1

C43H70NO10P (791.4737)


   

Lnaps 17:2/N-20:5

Lnaps 17:2/N-20:5

C43H70NO10P (791.4737)


   

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C48H73NO8 (791.5336)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C48H73NO8 (791.5336)


   

PI-Cer 14:3;2O/20:0;O

PI-Cer 14:3;2O/20:0;O

C40H74NO12P (791.4948)


   

PI-Cer 19:2;2O/15:1;O

PI-Cer 19:2;2O/15:1;O

C40H74NO12P (791.4948)


   

PI-Cer 18:1;2O/16:2;O

PI-Cer 18:1;2O/16:2;O

C40H74NO12P (791.4948)


   

PI-Cer 12:2;2O/22:1;O

PI-Cer 12:2;2O/22:1;O

C40H74NO12P (791.4948)


   

PI-Cer 16:1;2O/18:2;O

PI-Cer 16:1;2O/18:2;O

C40H74NO12P (791.4948)


   

PI-Cer 17:3;2O/17:0;O

PI-Cer 17:3;2O/17:0;O

C40H74NO12P (791.4948)


   

PI-Cer 14:2;2O/20:1;O

PI-Cer 14:2;2O/20:1;O

C40H74NO12P (791.4948)


   

PI-Cer 14:1;2O/20:2;O

PI-Cer 14:1;2O/20:2;O

C40H74NO12P (791.4948)


   

PI-Cer 18:2;2O/16:1;O

PI-Cer 18:2;2O/16:1;O

C40H74NO12P (791.4948)


   

PI-Cer 15:3;2O/19:0;O

PI-Cer 15:3;2O/19:0;O

C40H74NO12P (791.4948)


   

PI-Cer 12:1;2O/22:2;O

PI-Cer 12:1;2O/22:2;O

C40H74NO12P (791.4948)


   

PI-Cer 16:2;2O/18:1;O

PI-Cer 16:2;2O/18:1;O

C40H74NO12P (791.4948)


   

PI-Cer 22:3;2O/12:0;O

PI-Cer 22:3;2O/12:0;O

C40H74NO12P (791.4948)


   

PI-Cer 16:3;2O/18:0;O

PI-Cer 16:3;2O/18:0;O

C40H74NO12P (791.4948)


   

PI-Cer 20:2;2O/14:1;O

PI-Cer 20:2;2O/14:1;O

C40H74NO12P (791.4948)


   

PI-Cer 21:2;2O/13:1;O

PI-Cer 21:2;2O/13:1;O

C40H74NO12P (791.4948)


   

PI-Cer 15:2;2O/19:1;O

PI-Cer 15:2;2O/19:1;O

C40H74NO12P (791.4948)


   

PI-Cer 22:2;2O/12:1;O

PI-Cer 22:2;2O/12:1;O

C40H74NO12P (791.4948)


   

PI-Cer 19:3;2O/15:0;O

PI-Cer 19:3;2O/15:0;O

C40H74NO12P (791.4948)


   

PI-Cer 13:2;2O/21:1;O

PI-Cer 13:2;2O/21:1;O

C40H74NO12P (791.4948)


   

PI-Cer 20:3;2O/14:0;O

PI-Cer 20:3;2O/14:0;O

C40H74NO12P (791.4948)


   

PI-Cer 18:3;2O/16:0;O

PI-Cer 18:3;2O/16:0;O

C40H74NO12P (791.4948)


   

PI-Cer 21:3;2O/13:0;O

PI-Cer 21:3;2O/13:0;O

C40H74NO12P (791.4948)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[3-dodecoxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecoxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[2-dodecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-dodecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C44H74NO9P (791.5101)


   
   
   
   

OxPE 36:3e+4O(1Cyc)

OxPE 36:3e+4O(1Cyc)

C41H78NO11P (791.5312)


   

SHexCer 22:1;2O/13:1

SHexCer 22:1;2O/13:1

C41H77NO11S (791.5217)


   

SHexCer 19:1;2O/16:1

SHexCer 19:1;2O/16:1

C41H77NO11S (791.5217)


   

SHexCer 17:1;2O/18:1

SHexCer 17:1;2O/18:1

C41H77NO11S (791.5217)


   

SHexCer 15:1;2O/20:1

SHexCer 15:1;2O/20:1

C41H77NO11S (791.5217)


   

SHexCer 21:1;2O/14:1

SHexCer 21:1;2O/14:1

C41H77NO11S (791.5217)


   

SHexCer 16:1;2O/19:1

SHexCer 16:1;2O/19:1

C41H77NO11S (791.5217)


   

SHexCer 19:0;2O/16:2

SHexCer 19:0;2O/16:2

C41H77NO11S (791.5217)


   

SHexCer 15:0;2O/20:2

SHexCer 15:0;2O/20:2

C41H77NO11S (791.5217)


   

SHexCer 17:0;2O/18:2

SHexCer 17:0;2O/18:2

C41H77NO11S (791.5217)


   

SHexCer 20:1;2O/15:1

SHexCer 20:1;2O/15:1

C41H77NO11S (791.5217)


   

SHexCer 23:1;2O/12:1

SHexCer 23:1;2O/12:1

C41H77NO11S (791.5217)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

Dereplicator Identification-Schizopeptin_791

Dereplicator Identification-Schizopeptin_791

C42H61N7O8 (791.4581)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2R)-2-amino-3-[[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2R)-2-amino-3-[[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2R)-2-amino-3-[[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2R)-2-amino-3-[[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C43H70NO10P (791.4737)


   

BiotinylPE(23:0)

BiotinylPE(6:0_17:0)

C38H70N3O10PS (791.4519)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   

PC P-16:1/20:6;O2

PC P-16:1/20:6;O2

C44H74NO9P (791.5101)


   
   
   
   
   
   
   
   
   
   
   

PE O-16:0/20:3;O4

PE O-16:0/20:3;O4

C41H78NO11P (791.5312)


   
   
   
   

PE P-42:12 or PE O-42:13

PE P-42:12 or PE O-42:13

C47H70NO7P (791.489)


   
   
   
   
   
   
   
   
   
   
   
   

PS P-16:0/22:6 or PS O-16:1/22:6

PS P-16:0/22:6 or PS O-16:1/22:6

C44H74NO9P (791.5101)


   
   

PS P-16:1/22:5 or PS O-16:2/22:5

PS P-16:1/22:5 or PS O-16:2/22:5

C44H74NO9P (791.5101)


   
   

PS P-18:1/20:5 or PS O-18:2/20:5

PS P-18:1/20:5 or PS O-18:2/20:5

C44H74NO9P (791.5101)


   
   

PS P-38:6 or PS O-38:7

PS P-38:6 or PS O-38:7

C44H74NO9P (791.5101)


   
   
   
   
   
   
   
   
   
   
   

Hex2Cer 14:2;O2/14:0;O

Hex2Cer 14:2;O2/14:0;O

C40H73NO14 (791.5031)


   

Hex2Cer 15:2;O2/13:0;O

Hex2Cer 15:2;O2/13:0;O

C40H73NO14 (791.5031)


   

Hex2Cer 16:2;O2/12:0;O

Hex2Cer 16:2;O2/12:0;O

C40H73NO14 (791.5031)


   

Hex2Cer 17:2;O2/11:0;O

Hex2Cer 17:2;O2/11:0;O

C40H73NO14 (791.5031)


   

Hex2Cer 18:2;O2/10:0;O

Hex2Cer 18:2;O2/10:0;O

C40H73NO14 (791.5031)


   

Hex2Cer 28:2;O2;O

Hex2Cer 28:2;O2;O

C40H73NO14 (791.5031)


   

Hex2Cer 28:2;O3

Hex2Cer 28:2;O3

C40H73NO14 (791.5031)


   

LacCer 14:2;O2/14:0;O

LacCer 14:2;O2/14:0;O

C40H73NO14 (791.5031)


   

LacCer 15:2;O2/13:0;O

LacCer 15:2;O2/13:0;O

C40H73NO14 (791.5031)


   

LacCer 16:2;O2/12:0;O

LacCer 16:2;O2/12:0;O

C40H73NO14 (791.5031)


   

LacCer 17:2;O2/11:0;O

LacCer 17:2;O2/11:0;O

C40H73NO14 (791.5031)


   

LacCer 18:2;O2/10:0;O

LacCer 18:2;O2/10:0;O

C40H73NO14 (791.5031)


   

LacCer 28:2;O2;O

LacCer 28:2;O2;O

C40H73NO14 (791.5031)


   
   
   

IPC 14:2;O2/20:1;O

IPC 14:2;O2/20:1;O

C40H74NO12P (791.4948)


   
   
   
   
   

IPC 16:2;O2/18:1;O

IPC 16:2;O2/18:1;O

C40H74NO12P (791.4948)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-({[3-benzyl-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

2-({[3-benzyl-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-12-(sec-butyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C42H61N7O8 (791.4581)


   

(2r,3r)-2-[(hydroxymethylidene)amino]-3-methyl-n-[(3r,6s,13r,16r,19r,20s,23s)-5,15,18-trihydroxy-13-isopropyl-20-methyl-3,16-bis(2-methylpropyl)-2,12,22-trioxo-21-oxa-1,4,10,11,14,17,27-heptaazatricyclo[21.4.0.0⁶,¹¹]heptacosa-4,14,17-trien-19-yl]pentanimidic acid

(2r,3r)-2-[(hydroxymethylidene)amino]-3-methyl-n-[(3r,6s,13r,16r,19r,20s,23s)-5,15,18-trihydroxy-13-isopropyl-20-methyl-3,16-bis(2-methylpropyl)-2,12,22-trioxo-21-oxa-1,4,10,11,14,17,27-heptaazatricyclo[21.4.0.0⁶,¹¹]heptacosa-4,14,17-trien-19-yl]pentanimidic acid

C38H65N9O9 (791.4905)


   

(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C42H61N7O8 (791.4581)


   

(2s)-n-[(3s,6s,9s,12r,13s,16r,21as)-1,4,7,14-tetrahydroxy-3,6,9-triisopropyl-12-methyl-16-(2-methylpropyl)-10,17-dioxo-3h,6h,9h,12h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-l]1-oxa-4,7,10,13,16-pentaazacyclononadecan-13-yl]-2-[(1-hydroxy-3-methylbutylidene)amino]-3-methylbutanimidic acid

(2s)-n-[(3s,6s,9s,12r,13s,16r,21as)-1,4,7,14-tetrahydroxy-3,6,9-triisopropyl-12-methyl-16-(2-methylpropyl)-10,17-dioxo-3h,6h,9h,12h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-l]1-oxa-4,7,10,13,16-pentaazacyclononadecan-13-yl]-2-[(1-hydroxy-3-methylbutylidene)amino]-3-methylbutanimidic acid

C40H69N7O9 (791.5157)


   

(2r,3s)-2-({[(3s,6s,9r,12s,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

(2r,3s)-2-({[(3s,6s,9r,12s,15r)-3-benzyl-12-[(2s)-butan-2-yl]-2,5,11,14-tetrahydroxy-6,7-dimethyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid

C42H61N7O8 (791.4581)


   

n-[(1e,3r,4r,5r,9s,10s,11s)-11-[(1s,3s,4s,5s,7r,8s,9s,12e,14e,17s,19r)-7,17-dihydroxy-3,5-dimethoxy-4,8,14-trimethyl-11-oxo-10,23-dioxabicyclo[17.3.1]tricosa-12,14,20-trien-9-yl]-10-hydroxy-4-methoxy-3,5,9-trimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

n-[(1e,3r,4r,5r,9s,10s,11s)-11-[(1s,3s,4s,5s,7r,8s,9s,12e,14e,17s,19r)-7,17-dihydroxy-3,5-dimethoxy-4,8,14-trimethyl-11-oxo-10,23-dioxabicyclo[17.3.1]tricosa-12,14,20-trien-9-yl]-10-hydroxy-4-methoxy-3,5,9-trimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

C44H73NO11 (791.5183)


   

n-[(1e,3r,4r,5r,9s,10s,11s)-11-[(1s,3s,4r,5s,7r,8s,9r,12z,14z,17s,19r)-7,17-dihydroxy-3,5-dimethoxy-4,8,14-trimethyl-11-oxo-10,23-dioxabicyclo[17.3.1]tricosa-12,14,20-trien-9-yl]-10-hydroxy-4-methoxy-3,5,9-trimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

n-[(1e,3r,4r,5r,9s,10s,11s)-11-[(1s,3s,4r,5s,7r,8s,9r,12z,14z,17s,19r)-7,17-dihydroxy-3,5-dimethoxy-4,8,14-trimethyl-11-oxo-10,23-dioxabicyclo[17.3.1]tricosa-12,14,20-trien-9-yl]-10-hydroxy-4-methoxy-3,5,9-trimethyl-6-oxododec-1-en-1-yl]-n-methylformamide

C44H73NO11 (791.5183)


   

2-[(hydroxymethylidene)amino]-3-methyl-n-[5,15,18-trihydroxy-13-isopropyl-20-methyl-3,16-bis(2-methylpropyl)-2,12,22-trioxo-21-oxa-1,4,10,11,14,17,27-heptaazatricyclo[21.4.0.0⁶,¹¹]heptacosa-4,14,17-trien-19-yl]pentanimidic acid

2-[(hydroxymethylidene)amino]-3-methyl-n-[5,15,18-trihydroxy-13-isopropyl-20-methyl-3,16-bis(2-methylpropyl)-2,12,22-trioxo-21-oxa-1,4,10,11,14,17,27-heptaazatricyclo[21.4.0.0⁶,¹¹]heptacosa-4,14,17-trien-19-yl]pentanimidic acid

C38H65N9O9 (791.4905)


   

2-[(1-hydroxy-3-methylbutylidene)amino]-3-methyl-n-[1,4,7,14-tetrahydroxy-3,6,9-triisopropyl-12-methyl-16-(2-methylpropyl)-10,17-dioxo-3h,6h,9h,12h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-l]1-oxa-4,7,10,13,16-pentaazacyclononadecan-13-yl]butanimidic acid

2-[(1-hydroxy-3-methylbutylidene)amino]-3-methyl-n-[1,4,7,14-tetrahydroxy-3,6,9-triisopropyl-12-methyl-16-(2-methylpropyl)-10,17-dioxo-3h,6h,9h,12h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-l]1-oxa-4,7,10,13,16-pentaazacyclononadecan-13-yl]butanimidic acid

C40H69N7O9 (791.5157)


   

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24r,25s,27r)-17-ethyl-1,14-dihydroxy-12-[(1e)-1-[(1r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24r,25s,27r)-17-ethyl-1,14-dihydroxy-12-[(1e)-1-[(1r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H69NO12 (791.482)