Exact Mass: 789.4697

Exact Mass Matches: 789.4697

Found 48 metabolites which its exact mass value is equals to given mass value 789.4697, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

31-O-Demethyltacrolimus

(18Z,23S,24R)-12-[(1E)-1-[(4S)-3,4-dihydroxycyclohexyl]prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H67NO12 (789.4663)


31-O-Demethyltacrolimus is a metabolite of tacrolimus. Tacrolimus (also FK-506 or fujimycin, trade names Prograf, Advagraf, Protopic) is an immunosuppressive drug that is mainly used after allogeneic organ transplant to reduce the activity of the patients immune system and so lower the risk of organ rejection. It is also used in a topical preparation in the treatment of atopic dermatitis, severe refractory uveitis after bone marrow transplants, exacerbations of minimal change disease, and the skin condition vitiligo. (Wikipedia)

   

13-Demethyl tacrolimus

(1R,9S,12S,13R,14S,17R,18Z,21S,23S,24S,25S,27R)-1,14,25-trihydroxy-12-[(1E)-1-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23-methoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H67NO12 (789.4663)


13-Demethyl tacrolimus is a metabolite of tacrolimus. Tacrolimus (also FK-506 or fujimycin, trade names Prograf, Advagraf, Protopic) is an immunosuppressive drug that is mainly used after allogeneic organ transplant to reduce the activity of the patients immune system and so lower the risk of organ rejection. It is also used in a topical preparation in the treatment of atopic dermatitis, severe refractory uveitis after bone marrow transplants, exacerbations of minimal change disease, and the skin condition vitiligo. (Wikipedia)

   

PS(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2S)-2-amino-3-({[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tetradecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H72NO12P (789.4792)


PS(14:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

(2S)-2-amino-3-({[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tetradecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C40H72NO12P (789.4792)


PS(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Desmethyltacrolimus

Desmethyltacrolimus

C43H67NO12 (789.4663)


   

13-O-Demethyl tacrolimus

13-O-Demethyl tacrolimus

C43H67NO12 (789.4663)


   

Tacrolimus metabolite, M-VIII

Tacrolimus metabolite, M-VIII

C43H67NO12 (789.4663)


   

Tacrolimus metabolite M-I

Tacrolimus metabolite M-I

C43H67NO12 (789.4663)


   

Melonoside A

N-((28-O-beta-D-glucuronopyranosyl)-11,18-dioxo-2S-methoxy-5Z,21Z-octacosadienoyl)-tyramine

C43H67NO12 (789.4663)


   

31-O-Demethyl-FK506

31-O-Demethyl-FK506

C43H67NO12 (789.4663)


   

13-Demethyl tacrolimus

13-Demethyl tacrolimus

C43H67NO12 (789.4663)


   

PS(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PS(14:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C40H72NO12P (789.4792)


   

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

PS(20:3(8Z,11Z,14Z)-2OH(5,6)/14:0)

C40H72NO12P (789.4792)


   
   

SHexCer 20:3;2O/14:1;O

SHexCer 20:3;2O/14:1;O

C40H71NO12S (789.4697)


   

SHexCer 16:2;2O/18:2;O

SHexCer 16:2;2O/18:2;O

C40H71NO12S (789.4697)


   

SHexCer 15:3;2O/19:1;O

SHexCer 15:3;2O/19:1;O

C40H71NO12S (789.4697)


   

SHexCer 19:3;2O/15:1;O

SHexCer 19:3;2O/15:1;O

C40H71NO12S (789.4697)


   

SHexCer 14:2;2O/20:2;O

SHexCer 14:2;2O/20:2;O

C40H71NO12S (789.4697)


   

SHexCer 21:3;2O/13:1;O

SHexCer 21:3;2O/13:1;O

C40H71NO12S (789.4697)


   

SHexCer 16:3;2O/18:1;O

SHexCer 16:3;2O/18:1;O

C40H71NO12S (789.4697)


   

SHexCer 14:3;2O/20:1;O

SHexCer 14:3;2O/20:1;O

C40H71NO12S (789.4697)


   

SHexCer 18:3;2O/16:1;O

SHexCer 18:3;2O/16:1;O

C40H71NO12S (789.4697)


   

SHexCer 18:2;2O/16:2;O

SHexCer 18:2;2O/16:2;O

C40H71NO12S (789.4697)


   

SHexCer 22:3;2O/12:1;O

SHexCer 22:3;2O/12:1;O

C40H71NO12S (789.4697)


   

PI-Cer 22:3;2O/12:1;O

PI-Cer 22:3;2O/12:1;O

C40H72NO12P (789.4792)


   

PI-Cer 20:3;2O/14:1;O

PI-Cer 20:3;2O/14:1;O

C40H72NO12P (789.4792)


   

PI-Cer 19:3;2O/15:1;O

PI-Cer 19:3;2O/15:1;O

C40H72NO12P (789.4792)


   

PI-Cer 21:3;2O/13:1;O

PI-Cer 21:3;2O/13:1;O

C40H72NO12P (789.4792)


   

PI-Cer 16:2;2O/18:2;O

PI-Cer 16:2;2O/18:2;O

C40H72NO12P (789.4792)


   

PI-Cer 18:2;2O/16:2;O

PI-Cer 18:2;2O/16:2;O

C40H72NO12P (789.4792)


   

PI-Cer 14:3;2O/20:1;O

PI-Cer 14:3;2O/20:1;O

C40H72NO12P (789.4792)


   

PI-Cer 14:2;2O/20:2;O

PI-Cer 14:2;2O/20:2;O

C40H72NO12P (789.4792)


   

PI-Cer 16:3;2O/18:1;O

PI-Cer 16:3;2O/18:1;O

C40H72NO12P (789.4792)


   

PI-Cer 15:3;2O/19:1;O

PI-Cer 15:3;2O/19:1;O

C40H72NO12P (789.4792)


   

PI-Cer 18:3;2O/16:1;O

PI-Cer 18:3;2O/16:1;O

C40H72NO12P (789.4792)


   
   

31-O-Demethyltacrolimus

31-O-Demethyltacrolimus

C43H67NO12 (789.4663)


   
   
   
   
   
   
   

(18e)-12-[(1e)-1-(3,4-dihydroxycyclohexyl)prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

(18e)-12-[(1e)-1-(3,4-dihydroxycyclohexyl)prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H67NO12 (789.4663)


   

12-[1-(3,4-dihydroxycyclohexyl)prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

12-[1-(3,4-dihydroxycyclohexyl)prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H67NO12 (789.4663)


   

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24r,25s,27r)-12-[(1e)-1-[(1r,3r,4r)-3,4-dihydroxycyclohexyl]prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24r,25s,27r)-12-[(1e)-1-[(1r,3r,4r)-3,4-dihydroxycyclohexyl]prop-1-en-2-yl]-1,14-dihydroxy-23,25-dimethoxy-13,19,21,27-tetramethyl-17-(prop-2-en-1-yl)-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H67NO12 (789.4663)