Exact Mass: 784.367

Exact Mass Matches: 784.367

Found 92 metabolites which its exact mass value is equals to given mass value 784.367, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Fumonisin FP2

1-{14,15-bis[(3,4-dicarboxybutanoyl)oxy]-3,5-dihydroxy-12,16-dimethylicosan-2-yl}-3-hydroxypyridin-1-ium

C39H62NO15+ (784.4119)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins Fumonisin FP2 is produced by Fusarium moniliform

   

Fumonisin FP3

1-{14,15-bis[(3,4-dicarboxybutanoyl)oxy]-3,10-dihydroxy-12,16-dimethylicosan-2-yl}-3-hydroxypyridin-1-ium

C39H62NO15+ (784.4119)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins Fumonisin FP3 is produced by Fusarium moniliform

   

PGP(i-12:0/18:2(10E,12Z)+=O(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(i-12:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(10E,12Z)+=O(9)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(18:2(10E,12Z)+=O(9)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(10E,12Z)+=O(9)/i-12:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/18:2(9Z,11E)+=O(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(i-12:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:2(9Z,11E)+=O(13)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(18:2(9Z,11E)+=O(13)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:2(9Z,11E)+=O(13)/i-12:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/18:3(10,12,15)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(i-12:0/18:3(10,12,15)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(10,12,15)-OH(9)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(18:3(10,12,15)-OH(9)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(10,12,15)-OH(9)/i-12:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/18:3(9,11,15)-OH(13))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(i-12:0/18:3(9,11,15)-OH(13)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(18:3(9,11,15)-OH(13)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C36H66O14P2 (784.3928)


PGP(18:3(9,11,15)-OH(13)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(18:3(9,11,15)-OH(13)/i-12:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

Pregnadienolone-3-O-beta-D-gracillimatriose

Pregnadienolone-3-O-beta-D-gracillimatriose

C39H60O16 (784.3881)


   

4,4-Diapo-psi,psi-carotenedioic acid di-beta-D-glucopyranosyl ester

4,4-Diapo-psi,psi-carotenedioic acid di-beta-D-glucopyranosyl ester

C42H56O14 (784.367)


   

ancistrogriffithine A

ancistrogriffithine A

C48H52N2O8 (784.3723)


   

pseudostellarin F

pseudostellarin F

C38H56N8O10 (784.4119)


   

16(S)-{alpha-L-rhamnopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->3)]-beta-D-glucopyranosyloxy}pregna-4,17(20)Z-dien-3-one

16(S)-{alpha-L-rhamnopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->3)]-beta-D-glucopyranosyloxy}pregna-4,17(20)Z-dien-3-one

C39H60O16 (784.3881)


   

1beta-(beta)-furancarboxy-2beta,6alpha-diacetoxy-4alpha-hydroxy-9alpha,15-di(alpha-methyl)butanoyloxy-beta-dihydroagarofuran

1beta-(beta)-furancarboxy-2beta,6alpha-diacetoxy-4alpha-hydroxy-9alpha,15-di(alpha-methyl)butanoyloxy-beta-dihydroagarofuran

C41H52O15 (784.3306)


   

daturametelin G-Ac

daturametelin G-Ac

C42H56O14 (784.367)


   

16-O-Acetyl-glucogitodimethosid

16-O-Acetyl-glucogitodimethosid

C39H60O16 (784.3881)


   
   
   

9a-benzoyloxy-7b-isobutanoyloxy-2a,3b,8b,15b,17-pentaacetyloxyjatropha-5Z,11E-diene-14-one|euphodendrophane S

9a-benzoyloxy-7b-isobutanoyloxy-2a,3b,8b,15b,17-pentaacetyloxyjatropha-5Z,11E-diene-14-one|euphodendrophane S

C41H52O15 (784.3306)


   

cynanotoside A

cynanotoside A

C43H60O13 (784.4034)


   
   

1-Tigloy, 12-(2-methylpropanoyl), 3, 7, 11-tri-Ac, Me ester-14, 15-Epoxy-1, 3, 7, 11, 12-pentahydroxymeliacan-28-oic acid

1-Tigloy, 12-(2-methylpropanoyl), 3, 7, 11-tri-Ac, Me ester-14, 15-Epoxy-1, 3, 7, 11, 12-pentahydroxymeliacan-28-oic acid

C42H56O14 (784.367)


   

bisrubescensin A

bisrubescensin A

C43H60O13 (784.4034)


   

Ustilagic acid

16-(O-(4-O-(3-hydroxyhexanoyl)-beta-D-glucopyranosyl-(6-O-acetyl)-beta-D-glucopyranosyl)-2,15,16-trihydroxy-hexadecanoic acid

C36H64O18 (784.4092)


   

Fumonisin FP2

1-{14,15-bis[(3,4-dicarboxybutanoyl)oxy]-3,5-dihydroxy-12,16-dimethylicosan-2-yl}-3-hydroxypyridin-1-ium

C39H62NO15+ (784.4119)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins

   

Fumonisin FP3

1-{14,15-bis[(3,4-dicarboxybutanoyl)oxy]-3,10-dihydroxy-12,16-dimethylicosan-2-yl}-3-hydroxypyridin-1-ium

C39H62NO15+ (784.4119)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins

   

Diapolycopenedioic acid diglucosyl ester

4,4-Di(beta-D-glucopyranosyl)-4,4-diapo-psi,psi-carotene-4,4-dioate

C42H56O14 (784.367)


   

6 6-DI-O-(TERT-BUTYLDIPHENYLSILYL)-D-

6 6-DI-O-(TERT-BUTYLDIPHENYLSILYL)-D-

C44H56O9Si2 (784.3463)


   

Grazoprevir hydrate

Grazoprevir hydrate

C38H52N6O10S (784.3465)


   

PGP(i-12:0/18:2(10E,12Z)+=O(9))

PGP(i-12:0/18:2(10E,12Z)+=O(9))

C36H66O14P2 (784.3928)


   

PGP(18:2(10E,12Z)+=O(9)/i-12:0)

PGP(18:2(10E,12Z)+=O(9)/i-12:0)

C36H66O14P2 (784.3928)


   

PGP(i-12:0/18:2(9Z,11E)+=O(13))

PGP(i-12:0/18:2(9Z,11E)+=O(13))

C36H66O14P2 (784.3928)


   

PGP(18:2(9Z,11E)+=O(13)/i-12:0)

PGP(18:2(9Z,11E)+=O(13)/i-12:0)

C36H66O14P2 (784.3928)


   

PGP(i-12:0/18:3(10,12,15)-OH(9))

PGP(i-12:0/18:3(10,12,15)-OH(9))

C36H66O14P2 (784.3928)


   

PGP(18:3(10,12,15)-OH(9)/i-12:0)

PGP(18:3(10,12,15)-OH(9)/i-12:0)

C36H66O14P2 (784.3928)


   

PGP(i-12:0/18:3(9,11,15)-OH(13))

PGP(i-12:0/18:3(9,11,15)-OH(13))

C36H66O14P2 (784.3928)


   

PGP(18:3(9,11,15)-OH(13)/i-12:0)

PGP(18:3(9,11,15)-OH(13)/i-12:0)

C36H66O14P2 (784.3928)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H65O13P (784.4163)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C40H65O13P (784.4163)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C40H65O13P (784.4163)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C40H65O13P (784.4163)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C40H65O13P (784.4163)


   
   
   

PG 22:4/12:3;O3

PG 22:4/12:3;O3

C40H65O13P (784.4163)


   

PG 22:5/12:2;O3

PG 22:5/12:2;O3

C40H65O13P (784.4163)


   
   
   
   

PI 20:0/7:2;O3

PI 20:0/7:2;O3

C36H65O16P (784.401)


   
   
   
   
   
   
   
   
   

Hexaethylene glycol phosphoramidite

Hexaethylene glycol phosphoramidite

C42H61N2O10P (784.4064)


Hexaethylene glycol phosphoramidite (Spacer Phosphoramidite 18) is an amidite reagent for oligonucleotide synthesis. Hexaethylene glycol phosphoramidite can be used as a linker in synthesis of nucleotide chain and qPCR probes[1][2].

   

bis[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (2e,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedioate

bis[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (2e,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedioate

C42H56O14 (784.367)


   

11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C38H56N8O10 (784.4119)


   

3a-hydroxy-7-{[6-(hydroxymethyl)-3,4-dimethoxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

3a-hydroxy-7-{[6-(hydroxymethyl)-3,4-dimethoxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

C39H60O16 (784.3881)


   

1-ethylidene-2-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-ethylidene-2-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H60O16 (784.3881)


   

1-(7-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)ethanone

1-(7-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)ethanone

C39H60O16 (784.3881)


   

[2-(acetyloxy)-5-{[hydroxy([3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy)phosphoryl]oxy}-9a,11a-dimethyl-1-(6-methylheptan-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxidanesulfonic acid

[2-(acetyloxy)-5-{[hydroxy([3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy)phosphoryl]oxy}-9a,11a-dimethyl-1-(6-methylheptan-2-yl)-tetradecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxidanesulfonic acid

C35H61O15PS (784.3469)


   

(3r,10s,20r,27r,30s,32r,40s)-36-chloro-29,32-dihydroxy-27-isopropyl-15-methoxy-10,11-dimethyl-1,7,8,11,17,18,24,25,28,39-decaazaheptacyclo[28.10.0.0³,⁸.0¹³,¹⁸.0²⁰,²⁵.0³²,⁴⁰.0³³,³⁸]tetraconta-16,28,33,35,37-pentaene-2,9,12,19,26-pentone

(3r,10s,20r,27r,30s,32r,40s)-36-chloro-29,32-dihydroxy-27-isopropyl-15-methoxy-10,11-dimethyl-1,7,8,11,17,18,24,25,28,39-decaazaheptacyclo[28.10.0.0³,⁸.0¹³,¹⁸.0²⁰,²⁵.0³²,⁴⁰.0³³,³⁸]tetraconta-16,28,33,35,37-pentaene-2,9,12,19,26-pentone

C36H49ClN10O8 (784.3423)


   

8-isopropyl 15-methyl (1s,2r,4r,6s,7r,8r,9r,10r,11s,12s,14r,15s,16r,18r)-9,14,18-tris(acetyloxy)-6-(furan-3-yl)-1,7,11,15-tetramethyl-12-{[(2e)-2-methylbut-2-enoyl]oxy}-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-8,15-dicarboxylate

8-isopropyl 15-methyl (1s,2r,4r,6s,7r,8r,9r,10r,11s,12s,14r,15s,16r,18r)-9,14,18-tris(acetyloxy)-6-(furan-3-yl)-1,7,11,15-tetramethyl-12-{[(2e)-2-methylbut-2-enoyl]oxy}-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-8,15-dicarboxylate

C42H56O14 (784.367)


   

1-[(3as,3br,7s,9ar,9bs,11as)-7-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

1-[(3as,3br,7s,9ar,9bs,11as)-7-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

C39H60O16 (784.3881)


   

1-[(3as,3br,7s,9ar,9bs,11as)-7-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

1-[(3as,3br,7s,9ar,9bs,11as)-7-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethanone

C39H60O16 (784.3881)


   

ancistrogriffithine a

NA

C48H52N2O8 (784.3723)


{"Ingredient_id": "HBIN015994","Ingredient_name": "ancistrogriffithine a","Alias": "NA","Ingredient_formula": "C48H52N2O8","Ingredient_Smile": "CC1CC2=CC(=C(C(=C2C(N1)C)OC)C3=CC(=C(C4=C3C=C(C=C4OC)C)O)C5=C(C6=C(C=C(C=C6OC)C)C(=C5)C7=C(C=C8CC(NC(C8=C7OC)C)C)O)O)O","Ingredient_weight": "784.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "21544","PubChem_id": "11735409","DrugBank_id": "NA"}

   

4-[(1r,3r)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-5'-[(1s,3s)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-8,8'-dimethoxy-6,6'-dimethyl-[2,2'-binaphthalene]-1,1'-diol

4-[(1r,3r)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-5'-[(1s,3s)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-8,8'-dimethoxy-6,6'-dimethyl-[2,2'-binaphthalene]-1,1'-diol

C48H52N2O8 (784.3723)


   

(3s,9s,12s,21s,24s,27s)-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,9s,12s,21s,24s,27s)-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C38H56N8O10 (784.4119)


   

n-[1-({4-[(3-{5-[3-(n,5-dihydroxy-3-methylpent-2-enamido)propyl]-3,6-dihydroxy-2,5-dihydropyrazin-2-yl}propyl)(hydroxy)carbamoyl]-3-methylbut-3-en-1-yl}oxy)-1-oxo-5-(n,4,5-trihydroxy-3-methylpent-2-enamido)pentan-2-yl]ethanimidic acid

n-[1-({4-[(3-{5-[3-(n,5-dihydroxy-3-methylpent-2-enamido)propyl]-3,6-dihydroxy-2,5-dihydropyrazin-2-yl}propyl)(hydroxy)carbamoyl]-3-methylbut-3-en-1-yl}oxy)-1-oxo-5-(n,4,5-trihydroxy-3-methylpent-2-enamido)pentan-2-yl]ethanimidic acid

C35H56N6O14 (784.3854)


   

(1z,2s,3as,3br,9ar,9bs,11as)-1-ethylidene-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1z,2s,3as,3br,9ar,9bs,11as)-1-ethylidene-2-{[(2r,3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C39H60O16 (784.3881)


   

(1r,2r,4r,5r,6s,7r,9s,10r,11s,13s,14s,15r)-2,4,5,7,10,11-hexakis(acetyloxy)-1-hydroxy-4,12,12,15-tetramethyl-8-methylidene-9-(2-methylpropoxy)-16-oxatricyclo[11.2.1.0²,⁶]hexadecan-14-yl acetate

(1r,2r,4r,5r,6s,7r,9s,10r,11s,13s,14s,15r)-2,4,5,7,10,11-hexakis(acetyloxy)-1-hydroxy-4,12,12,15-tetramethyl-8-methylidene-9-(2-methylpropoxy)-16-oxatricyclo[11.2.1.0²,⁶]hexadecan-14-yl acetate

C38H56O17 (784.3517)


   

7-ethyl-2,5,11-trihydroxy-24-methoxy-10-[(4-methoxyphenyl)methyl]-4,9,13,15,29-pentamethyl-22-oxa-3,6,9,12,15,29-hexaazatetracyclo[14.12.2.2¹⁸,²¹.1²³,²⁷]tritriaconta-2,5,11,18,20,23(31),24,26,32-nonaene-8,14,30-trione

7-ethyl-2,5,11-trihydroxy-24-methoxy-10-[(4-methoxyphenyl)methyl]-4,9,13,15,29-pentamethyl-22-oxa-3,6,9,12,15,29-hexaazatetracyclo[14.12.2.2¹⁸,²¹.1²³,²⁷]tritriaconta-2,5,11,18,20,23(31),24,26,32-nonaene-8,14,30-trione

C42H52N6O9 (784.3796)


   

1,20,21-trihydroxy-10,10-dimethyl-17-methylidene-5-(1-{9,10,15,18-tetrahydroxy-12,12-dimethyl-7-oxo-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-6-yl}propan-2-yl)-2,4,6-trioxahexacyclo[9.8.1.1¹⁶,¹⁹.0³,¹².0⁷,¹².0¹³,¹⁹]henicosan-18-one

1,20,21-trihydroxy-10,10-dimethyl-17-methylidene-5-(1-{9,10,15,18-tetrahydroxy-12,12-dimethyl-7-oxo-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-6-yl}propan-2-yl)-2,4,6-trioxahexacyclo[9.8.1.1¹⁶,¹⁹.0³,¹².0⁷,¹².0¹³,¹⁹]henicosan-18-one

C43H60O13 (784.4034)


   

(1s,2s,3as,3bs,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4s,5r,6r)-6-(hydroxymethyl)-3,4-dimethoxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

(1s,2s,3as,3bs,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,3r,4s,5r,6r)-6-(hydroxymethyl)-3,4-dimethoxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

C39H60O16 (784.3881)


   

(3s,9r,12s,21s,24r,27s)-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,9r,12s,21s,24r,27s)-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-9,24-bis(2-methylpropyl)-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C38H56N8O10 (784.4119)


   

(3s,9s,12s,21s,24s,27s)-9,24-bis[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

(3s,9s,12s,21s,24s,27s)-9,24-bis[(2s)-butan-2-yl]-11,14,17,20,23,26-hexahydroxy-21-(hydroxymethyl)-12-[(4-hydroxyphenyl)methyl]-1,7,10,13,16,19,22,25-octaazatricyclo[25.3.0.0³,⁷]triaconta-10,13,16,19,22,25-hexaene-2,8-dione

C38H56N8O10 (784.4119)


   

(1s,4r,7s,10s,13s,16s)-7-ethyl-2,5,11-trihydroxy-24-methoxy-10-[(4-methoxyphenyl)methyl]-4,9,13,15,29-pentamethyl-22-oxa-3,6,9,12,15,29-hexaazatetracyclo[14.12.2.2¹⁸,²¹.1²³,²⁷]tritriaconta-2,5,11,18,20,23(31),24,26,32-nonaene-8,14,30-trione

(1s,4r,7s,10s,13s,16s)-7-ethyl-2,5,11-trihydroxy-24-methoxy-10-[(4-methoxyphenyl)methyl]-4,9,13,15,29-pentamethyl-22-oxa-3,6,9,12,15,29-hexaazatetracyclo[14.12.2.2¹⁸,²¹.1²³,²⁷]tritriaconta-2,5,11,18,20,23(31),24,26,32-nonaene-8,14,30-trione

C42H52N6O9 (784.3796)


   

(1s,3s,5r,7s,11r,12r,13s,16s,19r,20s,21r)-1,20,21-trihydroxy-10,10-dimethyl-17-methylidene-5-[(2r)-1-[(1s,2s,5s,6s,8r,9s,10s,11r,15s,18r)-9,10,15,18-tetrahydroxy-12,12-dimethyl-7-oxo-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-6-yl]propan-2-yl]-2,4,6-trioxahexacyclo[9.8.1.1¹⁶,¹⁹.0³,¹².0⁷,¹².0¹³,¹⁹]henicosan-18-one

(1s,3s,5r,7s,11r,12r,13s,16s,19r,20s,21r)-1,20,21-trihydroxy-10,10-dimethyl-17-methylidene-5-[(2r)-1-[(1s,2s,5s,6s,8r,9s,10s,11r,15s,18r)-9,10,15,18-tetrahydroxy-12,12-dimethyl-7-oxo-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-6-yl]propan-2-yl]-2,4,6-trioxahexacyclo[9.8.1.1¹⁶,¹⁹.0³,¹².0⁷,¹².0¹³,¹⁹]henicosan-18-one

C43H60O13 (784.4034)


   

8-isopropyl 15-methyl 9,14,18-tris(acetyloxy)-6-(furan-3-yl)-1,7,11,15-tetramethyl-12-[(2-methylbut-2-enoyl)oxy]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-8,15-dicarboxylate

8-isopropyl 15-methyl 9,14,18-tris(acetyloxy)-6-(furan-3-yl)-1,7,11,15-tetramethyl-12-[(2-methylbut-2-enoyl)oxy]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-8,15-dicarboxylate

C42H56O14 (784.367)


   

4,4'-bis[(1r,3s)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-8,8'-dimethoxy-6,6'-dimethyl-[2,2'-binaphthalene]-1,1'-diol

4,4'-bis[(1r,3s)-6-hydroxy-8-methoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-7-yl]-8,8'-dimethoxy-6,6'-dimethyl-[2,2'-binaphthalene]-1,1'-diol

C48H52N2O8 (784.3723)


   

36-chloro-29,32-dihydroxy-27-isopropyl-15-methoxy-10,11-dimethyl-1,7,8,11,17,18,24,25,28,39-decaazaheptacyclo[28.10.0.0³,⁸.0¹³,¹⁸.0²⁰,²⁵.0³²,⁴⁰.0³³,³⁸]tetraconta-16,28,33,35,37-pentaene-2,9,12,19,26-pentone

36-chloro-29,32-dihydroxy-27-isopropyl-15-methoxy-10,11-dimethyl-1,7,8,11,17,18,24,25,28,39-decaazaheptacyclo[28.10.0.0³,⁸.0¹³,¹⁸.0²⁰,²⁵.0³²,⁴⁰.0³³,³⁸]tetraconta-16,28,33,35,37-pentaene-2,9,12,19,26-pentone

C36H49ClN10O8 (784.3423)


   

[(2r,3r,4s,5r,6r)-6-{[(1r,4r,5r,8r)-8-[(1s,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-9-oxo-1h,2h,3h,3ah,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-methyl-3-oxo-2,6-dioxabicyclo[3.3.1]nonan-4-yl]methoxy}-3,4,5-tris(acetyloxy)oxan-2-yl]methyl acetate

[(2r,3r,4s,5r,6r)-6-{[(1r,4r,5r,8r)-8-[(1s,3as,3bs,9ar,9bs,11as)-9a,11a-dimethyl-9-oxo-1h,2h,3h,3ah,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-methyl-3-oxo-2,6-dioxabicyclo[3.3.1]nonan-4-yl]methoxy}-3,4,5-tris(acetyloxy)oxan-2-yl]methyl acetate

C42H56O14 (784.367)


   

n-(1-{[(3e)-4-{[3-(5-{3-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl](hydroxy)carbamoyl}-3-methylbut-3-en-1-yl]oxy}-1-oxo-5-[(2e)-n,4,5-trihydroxy-3-methylpent-2-enamido]pentan-2-yl)ethanimidic acid

n-(1-{[(3e)-4-{[3-(5-{3-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl)propyl](hydroxy)carbamoyl}-3-methylbut-3-en-1-yl]oxy}-1-oxo-5-[(2e)-n,4,5-trihydroxy-3-methylpent-2-enamido]pentan-2-yl)ethanimidic acid

C35H56N6O14 (784.3854)


   

{6-[(8-{9a,11a-dimethyl-9-oxo-1h,2h,3h,3ah,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-methyl-3-oxo-2,6-dioxabicyclo[3.3.1]nonan-4-yl)methoxy]-3,4,5-tris(acetyloxy)oxan-2-yl}methyl acetate

{6-[(8-{9a,11a-dimethyl-9-oxo-1h,2h,3h,3ah,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-methyl-3-oxo-2,6-dioxabicyclo[3.3.1]nonan-4-yl)methoxy]-3,4,5-tris(acetyloxy)oxan-2-yl}methyl acetate

C42H56O14 (784.367)