Exact Mass: 782.437
Exact Mass Matches: 782.437
Found 129 metabolites which its exact mass value is equals to given mass value 782.437
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Madlongiside D
Madlongiside D is found in fruits. Madlongiside D is a constituent of the famine food Madhuca longifolia. Constituent of the famine food Madhuca longifolia. Madlongiside D is found in fruits.
Dihydrodigoxin
Dihydrodigoxin belongs to the family of Terpene Glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
PA(18:4(6Z,9Z,12Z,15Z)/6 keto-PGF1alpha)
PA(18:4(6Z,9Z,12Z,15Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(6 keto-PGF1alpha/18:4(6Z,9Z,12Z,15Z))
PA(6 keto-PGF1alpha/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:4(6Z,9Z,12Z,15Z)/TXB2)
PA(18:4(6Z,9Z,12Z,15Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/TXB2), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(TXB2/18:4(6Z,9Z,12Z,15Z))
PA(TXB2/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aS,6aS,6bR,9R,10R,11S,12aR)-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate
3-O-??-L-Arabinopyranosylcimigenol 15-O-??-D-glucopyranoside
3beta-[(alpha-L-arabinopyranosyl)oxy]-16alpha,23-dihydroxyolean-12-en-28-oic acid beta-D-glucopyranosyl ester
6alpha-acetoxy-23alpha-ethoxy-16beta,23(R)-epoxy-24,25,26,27-tetranor-9,19-cyclolanosta-3-O-[beta-D-glucopyranosyl(1->2)]-beta-D-xylopyranoside|tomentoside IV
3beta-[(O-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosyl)oxy]-16alpha,23-dihydroxyolean-12-en-28-oic acid|hederagenin 3-O-beta-D-glucopyranosyl-(1-2)-O-alpha-L-arabinopyranoside
3-O-2)-beta-D-glucopyranosyl>-bayogenin|3-O-[alpha-L-arabinopyranosyl(1->2)-beta-D-glucopyranosyl]-bayogenin|lobatoside A
2alpha,3alpha,19alpha-trihydroxyurs-12-en-28-oic acid 28-O-beta-D-xylopyranosyl (1?2)-beta-D-glucopyranoside
(2S,3R,4R,4aR,6aR,6bS,8aS,12aR,14aR,14bR)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydro-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8-oxopicen-3-yl 2-O-beta-D-glucopyranosyl-beta-D-glucopyranoside|3beta-[beta-D-glucopyranosyl-(1?2)-beta-D-glucopyranosyloxy]-2beta,23-dihydroxy-28-norolean-12-en-16-one|Tubeimoside A
(2S,3R,4R,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydro-2-hydroxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-9-oxopicen-3-yl 2-O-beta-D-glucopyranosyl-beta-D-glucopyranoside|3beta-[beta-D-glucopyranosyl-(1?2)-beta-D-glucopyranosyloxy]-2beta,23-dihydroxy-28-norolean-12-en-22-one|Tubeimoside B
2beta,3beta,23-trihydroxyolean-12-en-28-oic acid-28-O-beta-D-xylopyranosyl-(1?6)-O-beta-D-glucopyranoside
3-O-(Apiofuranosyl-(1->4)-beta-D-glucopyranosyl)-16beta-hydroxy-gratiogenine|3-O-[Apiofuranosyl-(1->4)-beta-D-glucopyranosyl]-16beta-hydroxy-gratiogenine
cyclo-(cis-Pro1-Tyr2-trans-Pro3-Ala4-Ile5-Gln6-Ile7)|stylissamide E
C41H66O14_1-O-[(2beta,3beta,5xi,9xi,18xi)-2,23-Dihydroxy-28-oxo-3-(beta-D-xylopyranosyloxy)olean-12-en-28-yl]-beta-D-glucopyranose
C41H66O14_9,19-Cyclolanost-24-en-26-oic acid, 3-[(2-O-hexopyranosylpentopyranosyl)oxy]-12,15-dihydroxy-, (3beta,8xi,9beta,24E)
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aS,6aS,6bR,9R,10R,11S,12aR)-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_96.5\\%
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aS,6aS,6bR,9R,10R,11S,12aR)-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_major
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aS,6aS,6bR,9R,10R,11S,12aR)-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_97.2\\%
[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (4aS,6aS,6bR,9R,10R,11S,12aR)-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate_62.5\\%
Madlongiside D
5,10,15,20-Tetrakis(2,4,6-trimethylphenyl)porphyrin
20,22-Dihydrodigoxin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides A cardanolide glycoside that is the 20,22-dihydro derivative of digoxin.
cimifoetiside A
A triterpene glycoside that consists of cimigenol attached to a beta-D-glucopyranosyl-(1->3)-beta-D-xylopyranosyl moiety at position 3 via a beta-glycosidic linkage (the 23R,24S stereoisomer). It is isolated from the aerial parts of Cimicifuga foetida and exhibits significant immunosuppressive effect.
cimifoetiside B
A triterpene glycoside that consists of cimigenol attached to a beta-D-glucopyranosyl-(1->2)-beta-D-xylopyranosyl moiety at position 3 via a beta-glycosidic linkage (the 23R,24S stereoisomer). It is isolated from the aerial parts of Cimicifuga foetida and exhibits significant immunosuppressive effect.
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[3,4,5-trihydroxy-6-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid
[6-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[2,3-bis[[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-1-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4as,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,9r,10s,12ar,12br,14bs)-1-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(1s,2r,3r,4ar,6as,6br,8as,10s,12ar,12br,14br)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
3-o-α-l-arabinopyranosylcimigenol 15-o-β-d-glucopyranoside
{"Ingredient_id": "HBIN009070","Ingredient_name": "3-o-\u03b1-l-arabinopyranosylcimigenol 15-o-\u03b2-d-glucopyranoside","Alias": "NA","Ingredient_formula": "C41H66O14","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1561","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}