Exact Mass: 780.6115014000001
Exact Mass Matches: 780.6115014000001
Found 500 metabolites which its exact mass value is equals to given mass value 780.6115014000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
3-Demethylubiquinone-9
This compound belongs to the family of Ubiquinones. These are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methyl(1,4-benzoquinone) moiety to which an isoprenyl group is attached at ring position 2(or 6).
SM(d18:0/22:3(10Z,13Z,16Z))
C45H85N2O6P (780.6144919999999)
Sphingomyelin (d18:0/22:3(10Z,13Z,16Z)) or SM (d18:0/22:3(10Z,13Z,16Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Sphingomyelin (d18:0/22:3(10Z,13Z,16Z)) or SM (d18:0/22:3(10Z,13Z,16Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction.
SM(d19:0/20:4(6E,8Z,11Z,14Z)+=O(5))
SM(d19:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:0/20:4(5Z,8Z,11Z,13E)+=O(15))
SM(d19:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))
SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))
SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))
SM(d19:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))
SM(d19:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:3(5Z,8Z,11Z)-O(14R,15S))
SM(d19:1/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:3(5Z,8Z,14Z)-O(11S,12R))
SM(d19:1/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:3(5Z,11Z,14Z)-O(8,9))
SM(d19:1/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:3(8Z,11Z,14Z)-O(5,6))
SM(d19:1/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(20))
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(6E,8Z,11Z,14Z)-OH(5S))
SM(d19:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(19S))
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(18R))
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(17))
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(16R))
SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,11Z,13E)-OH(15S))
SM(d19:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,8Z,10E,14Z)-OH(12S))
SM(d19:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5E,8Z,12Z,14Z)-OH(11R))
SM(d19:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d19:1/20:4(5Z,7E,11Z,14Z)-OH(9))
SM(d19:1/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d19:1/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
3-methoxy-4-hydroxy-5-all-trans-nonaprenylbenzoate
TG(14:1(9Z)/15:1(9Z)/18:4(6Z,9Z,12Z,15Z))[iso6]
16:3-Glc-Cholesterol
TG(12:0/13:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))[iso6]
TG(12:0/15:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))[iso6]
TG(12:0/17:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))[iso6]
TG(13:0/14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))[iso6]
3-Demethylubiquinone-9
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-hydroxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[(E)-2-[[(18Z,21Z,24Z)-dotriaconta-18,21,24-trienoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]icosyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxytetracos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxytricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]docosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(17Z,20Z)-octacosa-17,20-dienoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxytetracosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]docos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxytetracosyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxytetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxytetracosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]heptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-3-hydroxy-2-[[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-hydroxy-2-[[(18Z,21Z,24Z,27Z)-triaconta-18,21,24,27-tetraenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]docosyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]icos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]docosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
(2-nonanoyloxy-3-octanoyloxypropyl) (12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoate
(2-hexadecanoyloxy-3-nonanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-octanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
(3-octanoyloxy-2-pentadecanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropyl] (Z)-henicos-11-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-nonanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropyl] (11Z,14Z)-henicosa-11,14-dienoate
(3-octanoyloxy-2-undecanoyloxypropyl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
(3-nonanoyloxy-2-tetradecanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-octanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-nonanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-icos-11-enoate
(2-heptadecanoyloxy-3-octanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
(2-dodecanoyloxy-3-nonanoyloxypropyl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[3-nonanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-nonanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonanoyloxypropyl] (13Z,16Z)-docosa-13,16-dienoate
[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[3-nonanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-octanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[3-nonanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[3-nonanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
(3-octanoyloxy-2-tridecanoyloxypropyl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
(2-decanoyloxy-3-nonanoyloxypropyl) (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
[3-octanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-tridecanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate
[3-dodecanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-heptadec-9-enoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[3-decanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tridecanoyloxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-undecanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[3-dodecanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[3-dodecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-undecanoyloxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate
[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-undecanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
(3-decanoyloxy-2-tridecanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
(2-dodecanoyloxy-3-undecanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
(2-tetradecanoyloxy-3-undecanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[2-hexadecanoyloxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-octadec-9-enoate
[2-tetradecanoyloxy-3-[(Z)-tridec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-nonadec-9-enoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tridecanoyloxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[2-pentadecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate
(3-decanoyloxy-2-undecanoyloxypropyl) (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[3-decanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
(3-decanoyloxy-2-pentadecanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[3-decanoyloxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-undecanoyloxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-undecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[2-[[(20Z,23Z,26Z,29Z)-dotriaconta-20,23,26,29-tetraenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]hexacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]icosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]pentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]icosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
(3-dodecanoyloxy-2-tridecanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[3-dodecanoyloxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] heptadecanoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-hexadecanoyloxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[2-pentadecanoyloxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]docosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxytetracosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(Z)-hexadec-7-enoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] octadecanoate
(2-tetradecanoyloxy-3-tridecanoyloxypropyl) (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]docosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] nonadecanoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] icosanoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z)-henicosa-9,11-dienoate
[3-[(Z)-dodec-5-enoyl]oxy-2-hexadecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] hexadecanoate
2,3-bis[[(Z)-tridec-8-enoyl]oxy]propyl (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] heptadecanoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] octadecanoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[3-dodecanoyloxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z)-henicosa-9,11-dienoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate
[3-[(Z)-dodec-5-enoyl]oxy-2-tetradecanoyloxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxypropyl] (Z)-octadec-11-enoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (Z)-icos-11-enoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate
[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-tridecanoyloxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (7Z,9Z)-nonadeca-7,9-dienoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[(4E,8E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-dodecanoyloxy-2-[(Z)-hexadec-7-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate
[3-dodecanoyloxy-2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]heptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-hexadecanoyloxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-heptadec-7-enoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate
[2-[(Z)-hexadec-7-enoyl]oxy-3-tridecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-pentadecanoyloxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tetradecanoyloxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-heptadecanoyloxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[3-dodecanoyloxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
2,3-bis[[(Z)-tetradec-9-enoyl]oxy]propyl (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] octadecanoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetracos-11-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[2-[(Z)-hexadec-7-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-tridecanoyloxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[(4E,8E,12E)-2-[[(Z)-hexacos-11-enoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] henicosanoate
[2-hexadecanoyloxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxytetracosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxyoctacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-hexadec-7-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-heptadecanoyloxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (Z)-octadec-11-enoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (Z)-heptadec-7-enoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-tridecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate
[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate
[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[3-dodecanoyloxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[2-pentadecanoyloxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[1-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-tetradecanoyloxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[(4E,8E)-2-[[(11Z,14Z)-hexacosa-11,14-dienoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-pentadecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-tetradecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[3-dodecanoyloxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (13Z,16Z,19Z)-docosa-13,16,19-trienoate
[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[3-pentadecanoyloxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-tridecanoyloxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (Z)-icos-11-enoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (Z)-henicos-9-enoate
[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (Z)-heptadec-7-enoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (Z)-octadec-11-enoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tricos-11-enoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(4E,8E,12E)-2-[[(Z)-henicos-9-enoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] nonadecanoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] (Z)-octadec-11-enoate
[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-pentadecanoyloxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-pentadecanoyloxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (13Z,16Z,19Z)-docosa-13,16,19-trienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] nonadecanoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-heptadec-7-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentacos-11-enoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-pentadecanoyloxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropan-2-yl] hexadecanoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
2,3-bis[[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy]propyl (11Z,14Z)-heptadeca-11,14-dienoate
[(4E,8E)-3-hydroxy-2-[[(18Z,21Z)-tetracosa-18,21-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z)-henicosa-9,11-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-heptadec-7-enoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[2-tetradecanoyloxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl nonadecanoate
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-henicos-9-enoate
[3-dodecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-hexadec-7-enoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[3-dodecanoyloxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
(3-dodecanoyloxy-2-pentadecanoyloxypropyl) (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-tridecanoyloxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-tetradecanoyloxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-heptadec-7-enoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[3-dodecanoyloxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-hexadec-7-enoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-dodecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate
[2-[(Z)-hexadec-7-enoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-tridecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-pentadecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-tridecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate
[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-hexadec-7-enoate
[1-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropan-2-yl] (11Z,14Z)-heptadeca-11,14-dienoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-heptadec-7-enoate
[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tridecanoyloxypropyl] (Z)-octadec-11-enoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tetradecanoyloxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate
[3-tetradecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-heptadecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-dodecanoyloxy-2-[(Z)-heptadec-7-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (14Z,16Z)-docosa-14,16-dienoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-hexadecanoyloxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate
[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (Z)-heptadec-7-enoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate
[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] hexadecanoate
[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-octadec-11-enoate
2,3-bis[[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy]propyl heptadecanoate
[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate
[(4E,8E,12E)-2-[[(Z)-docos-11-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate
[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]docosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
[(2S,3R)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C45H85N2O6P (780.6144919999999)
2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[2-nonadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-(11,12-Dihydroxyoctadecanoyloxy)-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C42H87NO9P+ (780.6118121999999)
2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-heptadecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-icos-11-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-tetradecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-hexadecanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-icosanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-decanoyloxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-heptadecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(Z)-henicos-11-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(Z)-docos-13-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-dodecanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[3-nonoxy-2-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[3-nonadecoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(Z)-henicos-11-enoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[2-nonanoyloxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(Z)-heptadec-9-enoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-heptadecoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
2-[[3-[(Z)-henicos-11-enoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C45H83NO7P+ (780.5906837999999)
N-docosatrienoylsphingosine-1-phosphocholine
C45H85N2O6P (780.6144919999999)
A sphingomyelin 40:4 in which the ceramide N-acyl group is specified as docosatrienoyl.
sphingomyelin d18:1/22:3
C45H85N2O6P (780.6144919999999)
A sphingomyelin d18:1 in which the fatty acyl group contains 22 carbons and 3 double bonds.
SM(40:4)
C45H85N2O6P (780.6144919999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AcHexZyE(16:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved