Exact Mass: 779.437

Exact Mass Matches: 779.437

Found 156 metabolites which its exact mass value is equals to given mass value 779.437, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-(tetradecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids.

   

PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

(2S)-2-amino-3-({[(2R)-2,3-bis[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids.

   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)

(2S)-2-amino-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-(tetradecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids.

   

PS(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z))

(2S)-2-amino-3-({[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(14:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z))

(2S)-2-amino-3-({[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(14:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C42H70NO10P (779.4737)


PS(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C42H70NO10P (779.4737)


PS(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))

(2S)-2-amino-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z))

(2S)-2-amino-3-({[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(22:5(7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

(2S)-2-amino-3-({[(2R)-2,3-bis[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)), in particular, consists of two 6Z,9Z,12Z-octadecatrienoyl chains at positions C-1 and C-2. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z))

(2S)-2-amino-3-({[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C42H70NO10P (779.4737)


PS(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(22:5(4Z,7Z,10Z,13Z,16Z)/14:1(9Z)), in particular, consists of one 4Z,7Z,10Z,13Z,16Z-docosapentaenoyl chain to the C-1 atom, and one 9Z-tetradecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

Cyclosomatostatin

6-(4-aminobutyl)-12-benzyl-3-[1-(benzyloxy)ethyl]-9-[(1H-indol-3-yl)methyl]-1,4,7,10,13-pentaazacycloicosane-2,5,8,11,14-pentone

C44H57N7O6 (779.437)


   

Antibiotic X 14952B

Antibiotic X 14952B

C42H69NO12 (779.482)


   

13-des-O-methyl-onnamide A

13-des-O-methyl-onnamide A

C38H61N5O12 (779.4317)


   
   

PS(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-hexadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z,12Z-octadecadienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

1,2-di-(6Z,9Z,12Z-octadecatrienoyl)-sn-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-tetradecanoyl-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-tetradecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

PS(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

1,2-di-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

Toporoside D

N-((26-O-beta-D-glucuronopyranosyl)-11,16-dioxo-2S-methoxy-5Z-hexacosenoyl)-dopamine

C41H65NO13 (779.4456)


   

PS 36:6

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoserine

C42H70NO10P (779.4737)


   

Ktxfw

Ktxfw

C44H57N7O6 (779.437)


Cyclosomatostatin is a potent somatostatin (SST) receptor antagonist. Cyclosomatostatin can inhibit somatostatin receptor type 1 (SSTR1) signaling and decreases cell proliferation, ALDH+ cell population size and sphere-formation in colorectal cancer (CRC) cells[1].

   

(2S)-5-(diaminomethylideneamino)-2-[[(2E,4E,6E,11R)-11-hydroxy-12-[(2R,4R,6S)-6-[(S)-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-methoxymethyl]-4-methoxy-3,3-dimethyloxan-2-yl]dodeca-2,4,6-trienoyl]amino]pentanoic acid

(2S)-5-(diaminomethylideneamino)-2-[[(2E,4E,6E,11R)-11-hydroxy-12-[(2R,4R,6S)-6-[(S)-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-methoxymethyl]-4-methoxy-3,3-dimethyloxan-2-yl]dodeca-2,4,6-trienoyl]amino]pentanoic acid

C39H65N5O11 (779.468)


   

Demycosaminyl-nystatin

Demycosaminyl-nystatin

C41H63O14- (779.4218)


   
   

(2S)-2-[[(2E,4E,6E,11R)-12-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4,6-trienoyl]amino]-5-(diaminomethylideneamino)pentanoic acid

(2S)-2-[[(2E,4E,6E,11R)-12-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-11-hydroxydodeca-2,4,6-trienoyl]amino]-5-(diaminomethylideneamino)pentanoic acid

C38H61N5O12 (779.4317)


   
   
   

SHexCer 18:2;2O/15:0;O

SHexCer 18:2;2O/15:0;O

C39H73NO12S (779.4853)


   

SHexCer 20:2;2O/13:0;O

SHexCer 20:2;2O/13:0;O

C39H73NO12S (779.4853)


   

SHexCer 19:2;2O/14:0;O

SHexCer 19:2;2O/14:0;O

C39H73NO12S (779.4853)


   

SHexCer 16:2;2O/17:0;O

SHexCer 16:2;2O/17:0;O

C39H73NO12S (779.4853)


   

SHexCer 15:1;2O/18:1;O

SHexCer 15:1;2O/18:1;O

C39H73NO12S (779.4853)


   

SHexCer 21:1;2O/12:1;O

SHexCer 21:1;2O/12:1;O

C39H73NO12S (779.4853)


   

SHexCer 10:1;2O/23:1;O

SHexCer 10:1;2O/23:1;O

C39H73NO12S (779.4853)


   

SHexCer 18:1;2O/15:1;O

SHexCer 18:1;2O/15:1;O

C39H73NO12S (779.4853)


   

SHexCer 14:2;2O/19:0;O

SHexCer 14:2;2O/19:0;O

C39H73NO12S (779.4853)


   

SHexCer 14:1;2O/19:1;O

SHexCer 14:1;2O/19:1;O

C39H73NO12S (779.4853)


   

SHexCer 15:2;2O/18:0;O

SHexCer 15:2;2O/18:0;O

C39H73NO12S (779.4853)


   

SHexCer 13:2;2O/20:0;O

SHexCer 13:2;2O/20:0;O

C39H73NO12S (779.4853)


   

SHexCer 13:0;2O/20:2;O

SHexCer 13:0;2O/20:2;O

C39H73NO12S (779.4853)


   

SHexCer 21:2;2O/12:0;O

SHexCer 21:2;2O/12:0;O

C39H73NO12S (779.4853)


   

SHexCer 11:0;2O/22:2;O

SHexCer 11:0;2O/22:2;O

C39H73NO12S (779.4853)


   

SHexCer 17:1;2O/16:1;O

SHexCer 17:1;2O/16:1;O

C39H73NO12S (779.4853)


   

SHexCer 13:1;2O/20:1;O

SHexCer 13:1;2O/20:1;O

C39H73NO12S (779.4853)


   

SHexCer 12:2;2O/21:0;O

SHexCer 12:2;2O/21:0;O

C39H73NO12S (779.4853)


   

SHexCer 15:0;2O/18:2;O

SHexCer 15:0;2O/18:2;O

C39H73NO12S (779.4853)


   

SHexCer 20:1;2O/13:1;O

SHexCer 20:1;2O/13:1;O

C39H73NO12S (779.4853)


   

SHexCer 17:2;2O/16:0;O

SHexCer 17:2;2O/16:0;O

C39H73NO12S (779.4853)


   

SHexCer 19:1;2O/14:1;O

SHexCer 19:1;2O/14:1;O

C39H73NO12S (779.4853)


   

SHexCer 17:0;2O/16:2;O

SHexCer 17:0;2O/16:2;O

C39H73NO12S (779.4853)


   

SHexCer 11:1;2O/22:1;O

SHexCer 11:1;2O/22:1;O

C39H73NO12S (779.4853)


   

SHexCer 12:1;2O/21:1;O

SHexCer 12:1;2O/21:1;O

C39H73NO12S (779.4853)


   

Lnaps 22:5/N-14:1

Lnaps 22:5/N-14:1

C42H70NO10P (779.4737)


   

Lnaps 16:2/N-20:4

Lnaps 16:2/N-20:4

C42H70NO10P (779.4737)


   

Lnaps 20:5/N-16:1

Lnaps 20:5/N-16:1

C42H70NO10P (779.4737)


   

Lnaps 20:3/N-16:3

Lnaps 20:3/N-16:3

C42H70NO10P (779.4737)


   

Lnaps 14:0/N-22:6

Lnaps 14:0/N-22:6

C42H70NO10P (779.4737)


   

Lnaps 14:1/N-22:5

Lnaps 14:1/N-22:5

C42H70NO10P (779.4737)


   

Lnaps 16:3/N-20:3

Lnaps 16:3/N-20:3

C42H70NO10P (779.4737)


   

Lnaps 26:6/N-10:0

Lnaps 26:6/N-10:0

C42H70NO10P (779.4737)


   

Lnaps 12:0/N-24:6

Lnaps 12:0/N-24:6

C42H70NO10P (779.4737)


   

Lnaps 18:4/N-18:2

Lnaps 18:4/N-18:2

C42H70NO10P (779.4737)


   

Lnaps 16:1/N-20:5

Lnaps 16:1/N-20:5

C42H70NO10P (779.4737)


   

Lnaps 22:6/N-14:0

Lnaps 22:6/N-14:0

C42H70NO10P (779.4737)


   

Lnaps 10:0/N-26:6

Lnaps 10:0/N-26:6

C42H70NO10P (779.4737)


   

Lnaps 18:3/N-18:3

Lnaps 18:3/N-18:3

C42H70NO10P (779.4737)


   

Lnaps 20:4/N-16:2

Lnaps 20:4/N-16:2

C42H70NO10P (779.4737)


   

Lnaps 24:6/N-12:0

Lnaps 24:6/N-12:0

C42H70NO10P (779.4737)


   

Lnaps 18:2/N-18:4

Lnaps 18:2/N-18:4

C42H70NO10P (779.4737)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[2,3-bis[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[2,3-bis[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy]propoxy-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[[3-[(Z)-hexadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-2,3-bis[[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2,3-bis[[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-2,3-bis[[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2,3-bis[[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H70NO10P (779.4737)


   

digoxin(1-)

digoxin(1-)

C41H63O14 (779.4218)


An organic anion that is the conjugate base of digoxin resulting from the deprotonation of furanone moiety; major species at pH 7.3.

   

phosphatidylinositol 30:1(1-)

phosphatidylinositol 30:1(1-)

C39H72O13P (779.471)


A 1-phosphatidyl-1D-myo-inositol(1-) in which the acyl groups at C-1 and C-2 contain 30 carbons in total and 1 double bond.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Hex2Cer 26:2;O4

Hex2Cer 26:2;O4

C38H69NO15 (779.4667)


   
   
   

[(6-{[(9e,15e)-5-(6-ethyl-5-hydroxy-4-methyl-7-oxononan-2-yl)-1,7-dihydroxy-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-3-hydroxy-2-methyloxan-4-yl)oxy]methanimidic acid

[(6-{[(9e,15e)-5-(6-ethyl-5-hydroxy-4-methyl-7-oxononan-2-yl)-1,7-dihydroxy-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-3-hydroxy-2-methyloxan-4-yl)oxy]methanimidic acid

C42H69NO12 (779.482)


   

(15z,17z,19z,21z,23z)-25-{[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,9,29-tetrahydroxy-7,11-dioxo-13-(sec-butyl)-12,31-dioxabicyclo[25.3.1]hentriaconta-15,17,19,21,23-pentaene-28-carboxylic acid

(15z,17z,19z,21z,23z)-25-{[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,9,29-tetrahydroxy-7,11-dioxo-13-(sec-butyl)-12,31-dioxabicyclo[25.3.1]hentriaconta-15,17,19,21,23-pentaene-28-carboxylic acid

C40H61NO14 (779.4092)


   

(2s)-2-{[(2e,4e,6e,11r)-12-[(4s,4as,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-1,11-dihydroxydodeca-2,4,6-trien-1-ylidene]amino}-5-carbamimidamidopentanoic acid

(2s)-2-{[(2e,4e,6e,11r)-12-[(4s,4as,6r,8s,8ar)-4-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-hydroxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]-1,11-dihydroxydodeca-2,4,6-trien-1-ylidene]amino}-5-carbamimidamidopentanoic acid

C38H61N5O12 (779.4317)


   

(15z,17z,19z,21e,23z)-25-{[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,9,29-tetrahydroxy-7,11-dioxo-13-(sec-butyl)-12,31-dioxabicyclo[25.3.1]hentriaconta-15,17,19,21,23-pentaene-28-carboxylic acid

(15z,17z,19z,21e,23z)-25-{[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,9,29-tetrahydroxy-7,11-dioxo-13-(sec-butyl)-12,31-dioxabicyclo[25.3.1]hentriaconta-15,17,19,21,23-pentaene-28-carboxylic acid

C40H61NO14 (779.4092)


   

(2s)-5-carbamimidamido-2-{[(2e,4e,6e,11r)-12-[(2r,4r,6s)-6-[(s)-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}(methoxy)methyl]-4-methoxy-3,3-dimethyloxan-2-yl]-1,11-dihydroxydodeca-2,4,6-trien-1-ylidene]amino}pentanoic acid

(2s)-5-carbamimidamido-2-{[(2e,4e,6e,11r)-12-[(2r,4r,6s)-6-[(s)-{[(2r)-1,2-dihydroxy-2-[(2r,5r,6r)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]ethylidene]amino}(methoxy)methyl]-4-methoxy-3,3-dimethyloxan-2-yl]-1,11-dihydroxydodeca-2,4,6-trien-1-ylidene]amino}pentanoic acid

C39H65N5O11 (779.468)


   

{[(2r,3r,4r,6r)-6-{[(1r,5r,6r,8s,9z,11r,15z,17r)-5-[(2r,4r,5s,6s)-6-ethyl-5-hydroxy-4-methyl-7-oxononan-2-yl]-1,7-dihydroxy-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-3-hydroxy-2-methyloxan-4-yl]oxy}methanimidic acid

{[(2r,3r,4r,6r)-6-{[(1r,5r,6r,8s,9z,11r,15z,17r)-5-[(2r,4r,5s,6s)-6-ethyl-5-hydroxy-4-methyl-7-oxononan-2-yl]-1,7-dihydroxy-6,8,16,18-tetramethyl-3-oxo-4,21-dioxabicyclo[15.3.1]henicosa-9,15,18-trien-11-yl]oxy}-3-hydroxy-2-methyloxan-4-yl]oxy}methanimidic acid

C42H69NO12 (779.482)