Exact Mass: 776.4235172000001

Exact Mass Matches: 776.4235172000001

Found 199 metabolites which its exact mass value is equals to given mass value 776.4235172000001, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Lyciumoside IV

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{[(6E,10Z,14E)-3,7,11,15-tetramethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadeca-1,6,10,14-tetraen-3-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C38H64O16 (776.4194143999999)


Constituent of Lycium chinense (Chinese boxthorn). Lyciumoside IV is found in tea, coffee and coffee products, and herbs and spices. Lyciumoside IV is found in coffee and coffee products. Lyciumoside IV is a constituent of Lycium chinense (Chinese boxthorn).

   

PZ-Peptide

5-Carbamimidamido-2-({hydroxy[1-(2-{[1-hydroxy-2-({hydroxy[1-({[4-(2-phenyldiazen-1-yl)phenyl]methoxy}carbonyl)pyrrolidin-2-yl]methylidene}amino)-4-methylpentylidene]amino}acetyl)pyrrolidin-2-yl]methylidene}amino)pentanoate

C38H52N10O8 (776.3969392)


   

PA(18:2(9Z,11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(18:2(9Z,11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,11Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,11Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(18:2(9Z,11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,11Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,11Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:3(5Z,8Z,11Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)/PGJ2), in particular, consists of one chain of one 5Z,8Z,11Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/20:3(5Z,8Z,11Z))

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(PGJ2/20:3(5Z,8Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/20:3(5Z,8Z,11Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 5Z,8Z,11Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)/PGJ2)

[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:3(8Z,11Z,14Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)/PGJ2), in particular, consists of one chain of one 8Z,11Z,14Z-eicosatrienoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGJ2/20:3(8Z,11Z,14Z))

[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(PGJ2/20:3(8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/20:3(8Z,11Z,14Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 8Z,11Z,14Z-eicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C43H69O10P (776.4628104)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(a-13:0/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/PGE2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/a-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(PGE2/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/a-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(a-13:0/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/PGD2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/a-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(PGD2/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/a-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/PGE2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(i-13:0/PGE2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/PGE2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGE2/i-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(PGE2/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGE2/i-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/PGD2)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(i-13:0/PGD2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/PGD2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGD2/i-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(PGD2/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGD2/i-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(11-methyldodecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C39H69O13P (776.4475553999999)


PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

17-O-alpha-L-rhamnopyranosyl-(1->4)-[alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside-6E,10E,14Z-(3S)-19-hydroxygeranyllinalool|capsianoside XIV

17-O-alpha-L-rhamnopyranosyl-(1->4)-[alpha-L-rhamnopyranosyl-(1->6)]-beta-D-glucopyranoside-6E,10E,14Z-(3S)-19-hydroxygeranyllinalool|capsianoside XIV

C38H64O16 (776.4194143999999)


   
   
   

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labda-7,13E-diene-2-O-beta-glucopyranoside pentaacetate

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labda-7,13E-diene-2-O-beta-glucopyranoside pentaacetate

C41H60O14 (776.398286)


   

(23R,24S)-6beta,23,24-trihydroxy-5alpha-cholestane-3beta,16beta-diyl bis-beta-D-glucopyranoside

(23R,24S)-6beta,23,24-trihydroxy-5alpha-cholestane-3beta,16beta-diyl bis-beta-D-glucopyranoside

C39H68O15 (776.4557978)


   

ursa-1,12,19-trien-3-ol-28-oic acid-3beta-D-glucopyranosyl-(4-1)-beta-D-glucopyranoside

ursa-1,12,19-trien-3-ol-28-oic acid-3beta-D-glucopyranosyl-(4-1)-beta-D-glucopyranoside

C42H64O13 (776.4346694)


   

20-O-benzoyl-12-O-cinnamoyl-3beta,5alpha,8beta,12beta,14beta,17beta,20-heptahydroxy-(20S)-pregn-6-enyl-3-O-beta-D-cymaropyranoside|gymnepregoside H

20-O-benzoyl-12-O-cinnamoyl-3beta,5alpha,8beta,12beta,14beta,17beta,20-heptahydroxy-(20S)-pregn-6-enyl-3-O-beta-D-cymaropyranoside|gymnepregoside H

C44H56O12 (776.3771576)


   

Hexsose + Hexsose-deoxyHexose + C20H32

Hexsose + Hexsose-deoxyHexose + C20H32

C38H64O16 (776.4194143999999)


Annotation level-3

   

PI(12:0/18:3(6Z,9Z,12Z))

1-dodecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C39H69O13P (776.4475553999999)


   

PI(12:0/18:3(9Z,12Z,15Z))

1-dodecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-myo-inositol)

C39H69O13P (776.4475553999999)


   

PI(18:3(6Z,9Z,12Z)/12:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H69O13P (776.4475553999999)


   

PI(18:3(9Z,12Z,15Z)/12:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H69O13P (776.4475553999999)


   

Lyciumoside IV

2-{[(2E,6Z,10E)-14-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,15-tetraen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C38H64O16 (776.4194143999999)


An acyclic diterpene glycoside consisting of a 20-hydroxygeranyllinalool skeleton conjugated to a glucosyl residue at C-20 and a rhamnosylglucosyl moiety at C-3.

   

PI 30:3

1-(9Z,12Z,15Z-octadecatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H69O13P (776.4475553999999)


   

LPIM1 19:0

2-O-(alpha-D-Manp)-(1-nonadecanoyl-sn-glycero-3-phospho-1-myo-inositol)

C34H65O17P (776.395917)


   

2,5-Bis(2-ethylhexyl)-3,6-bis(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl)pyrrolo[3,4-c ]pyrrole-1,4(2H ,5H )-dione

2,5-Bis(2-ethylhexyl)-3,6-bis(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl)pyrrolo[3,4-c ]pyrrole-1,4(2H ,5H )-dione

C42H62B2N2O6S2 (776.4235172000001)


   

Pz-Pro-Leu-Gly-Pro-D-Arg-OH trifluoroacetate salt

Pz-Pro-Leu-Gly-Pro-D-Arg-OH trifluoroacetate salt

C38H52N10O8 (776.3969392)


   

Mutalomycin sodium salt

Mutalomycin sodium salt

C41H69NaO12 (776.4686474)


An organic sodium salt that is the monosodium salt of mutalomycin.

   

2-[[(2R,3R,4S,5R,6R)-3-[[3-amino-6-[[3-amino-6-(3,6-diaminohexanoylamino)hexanoyl]amino]hexanoyl]amino]-5-carbamoyloxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-5-(2-amino-1-hydroxyethyl)-4,5-dihydro-1H-imidazole-4-carboxylic acid

2-[[(2R,3R,4S,5R,6R)-3-[[3-amino-6-[[3-amino-6-(3,6-diaminohexanoylamino)hexanoyl]amino]hexanoyl]amino]-5-carbamoyloxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-5-(2-amino-1-hydroxyethyl)-4,5-dihydro-1H-imidazole-4-carboxylic acid

C31H60N12O11 (776.450429)


   
   
   
   
   
   
   
   
   

PA(20:3(5Z,8Z,11Z)/PGJ2)

PA(20:3(5Z,8Z,11Z)/PGJ2)

C43H69O10P (776.4628104)


   

PA(PGJ2/20:3(5Z,8Z,11Z))

PA(PGJ2/20:3(5Z,8Z,11Z))

C43H69O10P (776.4628104)


   

PA(20:3(8Z,11Z,14Z)/PGJ2)

PA(20:3(8Z,11Z,14Z)/PGJ2)

C43H69O10P (776.4628104)


   

PA(PGJ2/20:3(8Z,11Z,14Z))

PA(PGJ2/20:3(8Z,11Z,14Z))

C43H69O10P (776.4628104)


   

PG(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C39H69O13P (776.4475553999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0)

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0)

C39H69O13P (776.4475553999999)


   

PG(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PG(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C39H69O13P (776.4475553999999)


   

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0)

PG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0)

C39H69O13P (776.4475553999999)


   

PA(18:2(9Z,11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(18:2(9Z,11Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C43H69O10P (776.4628104)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,11Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,11Z))

C43H69O10P (776.4628104)


   

PA(18:2(9Z,11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(18:2(9Z,11Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C43H69O10P (776.4628104)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,11Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,11Z))

C43H69O10P (776.4628104)


   

PA(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(18:2(9Z,12Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C43H69O10P (776.4628104)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/18:2(9Z,12Z))

C43H69O10P (776.4628104)


   

PA(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(18:2(9Z,12Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C43H69O10P (776.4628104)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/18:2(9Z,12Z))

C43H69O10P (776.4628104)


   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H69O10P (776.4628104)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(5Z,8Z,11Z,14Z))

C43H69O10P (776.4628104)


   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(20:4(5Z,8Z,11Z,14Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H69O10P (776.4628104)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(5Z,8Z,11Z,14Z))

C43H69O10P (776.4628104)


   

PA(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(20:4(5Z,8Z,11Z,14Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H69O10P (776.4628104)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(5Z,8Z,11Z,14Z))

C43H69O10P (776.4628104)


   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C43H69O10P (776.4628104)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:4(8Z,11Z,14Z,17Z))

C43H69O10P (776.4628104)


   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(20:4(8Z,11Z,14Z,17Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C43H69O10P (776.4628104)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:4(8Z,11Z,14Z,17Z))

C43H69O10P (776.4628104)


   

PA(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(20:4(8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C43H69O10P (776.4628104)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:4(8Z,11Z,14Z,17Z))

C43H69O10P (776.4628104)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)-2OH(5,6))

C43H69O10P (776.4628104)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/20:5(5Z,8Z,11Z,14Z,17Z))

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/20:5(5Z,8Z,11Z,14Z,17Z))

C43H69O10P (776.4628104)


   
   

(4S,5S)-2-[[(2R,3R,4S,5R,6R)-3-[[(3S)-3-amino-6-[[(3S)-3-amino-6-[[(3S)-3,6-diaminohexanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-carbamoyloxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-4-[(1R)-2-amino-1-hydroxyethyl]-4,5-dihydro-1H-imidazole-5-carboxylic acid

(4S,5S)-2-[[(2R,3R,4S,5R,6R)-3-[[(3S)-3-amino-6-[[(3S)-3-amino-6-[[(3S)-3,6-diaminohexanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-carbamoyloxy-4-hydroxy-6-(hydroxymethyl)oxan-2-yl]amino]-4-[(1R)-2-amino-1-hydroxyethyl]-4,5-dihydro-1H-imidazole-5-carboxylic acid

C31H60N12O11 (776.450429)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H68O15 (776.4557978)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C39H68O15 (776.4557978)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C39H68O15 (776.4557978)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C39H68O15 (776.4557978)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H68O15 (776.4557978)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H68O15 (776.4557978)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C39H68O15 (776.4557978)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C39H69O13P (776.4475553999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H69O13P (776.4475553999999)


   

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H69O13P (776.4475553999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C39H69O13P (776.4475553999999)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H69O13P (776.4475553999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H69O13P (776.4475553999999)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C39H69O13P (776.4475553999999)


   

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O13P (776.4475553999999)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C43H69O10P (776.4628104)


   

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O13P (776.4475553999999)


   

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O13P (776.4475553999999)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O13P (776.4475553999999)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O13P (776.4475553999999)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate

C43H69O10P (776.4628104)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

C43H69O10P (776.4628104)


   

[(2R,3R,6R)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H60O12S (776.380528)


   

[(2R,3R,6R)-6-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C41H60O12S (776.380528)


   

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O13P (776.4475553999999)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O13P (776.4475553999999)


   

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C39H69O13P (776.4475553999999)


   

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-2-dodecanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O13P (776.4475553999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-({2-[({1-[2-({2-[(2-{[2-amino-1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-1,3-dihydroxybutylidene}amino)-4-methylpentanoic acid

2-({2-[({1-[2-({2-[(2-{[2-amino-1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-1,3-dihydroxybutylidene}amino)-4-methylpentanoic acid

C36H56N8O11 (776.4068346)


   

13,19-dihydroxy-3,3,29,29-tetramethyl-6,10,22,26-tetrakis(2-methylbut-3-en-2-yl)-4,8,16,24,28-pentaoxaheptacyclo[15.12.0.0²,¹⁵.0⁵,¹⁴.0⁷,¹².0¹⁸,²⁷.0²⁰,²⁵]nonacosa-5(14),6,10,12,18(27),19,21,25-octaene-9,23-dione

13,19-dihydroxy-3,3,29,29-tetramethyl-6,10,22,26-tetrakis(2-methylbut-3-en-2-yl)-4,8,16,24,28-pentaoxaheptacyclo[15.12.0.0²,¹⁵.0⁵,¹⁴.0⁷,¹².0¹⁸,²⁷.0²⁰,²⁵]nonacosa-5(14),6,10,12,18(27),19,21,25-octaene-9,23-dione

C48H56O9 (776.3924126000001)


   

(4r,6e,8z,10e,12r,20s,22z,24r,25s,26e,28z)-24,25-dihydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

(4r,6e,8z,10e,12r,20s,22z,24r,25s,26e,28z)-24,25-dihydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

C43H56N2O11 (776.3883906000001)


   

(1s,2s,15r,17s)-13,19-dihydroxy-3,3,29,29-tetramethyl-6,10,22,26-tetrakis(2-methylbut-3-en-2-yl)-4,8,16,24,28-pentaoxaheptacyclo[15.12.0.0²,¹⁵.0⁵,¹⁴.0⁷,¹².0¹⁸,²⁷.0²⁰,²⁵]nonacosa-5(14),6,10,12,18(27),19,21,25-octaene-9,23-dione

(1s,2s,15r,17s)-13,19-dihydroxy-3,3,29,29-tetramethyl-6,10,22,26-tetrakis(2-methylbut-3-en-2-yl)-4,8,16,24,28-pentaoxaheptacyclo[15.12.0.0²,¹⁵.0⁵,¹⁴.0⁷,¹².0¹⁸,²⁷.0²⁰,²⁵]nonacosa-5(14),6,10,12,18(27),19,21,25-octaene-9,23-dione

C48H56O9 (776.3924126000001)


   

atratoside a

NA

C42H64O13 (776.4346694)


{"Ingredient_id": "HBIN017323","Ingredient_name": "atratoside a","Alias": "NA","Ingredient_formula": "C42H64O13","Ingredient_Smile": "CC1C(C(CC(O1)OC2C(OC(CC2OC)OC3C(OC(CC3OC)OC4CC5=CCC6C(C5(CC4O)C)CCC(C6=O)(C)C7=C(OC=C7)C)C)C)OC)O","Ingredient_weight": "776.9 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT01282","TCMID_id": "1993","TCMSP_id": "NA","TCM_ID_id": "6483","PubChem_id": "101244249","DrugBank_id": "NA"}

   

(1r,4s,5r,8r,10s,13s,14r,19s,20s)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-19-hydroxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosa-15,17-dien-22-one

(1r,4s,5r,8r,10s,13s,14r,19s,20s)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-19-hydroxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosa-15,17-dien-22-one

C42H64O13 (776.4346694)


   

(10e)-24,25-dihydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

(10e)-24,25-dihydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

C43H56N2O11 (776.3883906000001)


   

(6r,7r)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

(6r,7r)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

C42H64O13 (776.4346694)


   

16-(4-{4-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-2-hydroxy-5-methyl-6-(penta-1,3-dien-1-yl)oxan-2-yl}-3-hydroxypentan-2-yl)-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

16-(4-{4-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-2-hydroxy-5-methyl-6-(penta-1,3-dien-1-yl)oxan-2-yl}-3-hydroxypentan-2-yl)-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

C43H68O12 (776.4710528)


   

2-[(14-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,15-tetraen-1-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(14-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,15-tetraen-1-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C38H64O16 (776.4194143999999)


   

(2r,3r,4s,5s,6r)-2-{[(2z,6e,10e,14s)-14-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,15-tetraen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2z,6e,10e,14s)-14-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,6,10,14-tetramethylhexadeca-2,6,10,15-tetraen-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C38H64O16 (776.4194143999999)


   

(2s,3s,4as,5r,8as)-5-[(3e)-5-(acetyloxy)-3-methylpent-3-en-1-yl]-1,1,4a,6-tetramethyl-3-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

(2s,3s,4as,5r,8as)-5-[(3e)-5-(acetyloxy)-3-methylpent-3-en-1-yl]-1,1,4a,6-tetramethyl-3-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

C41H60O14 (776.398286)


   

(3z,5e,7r,8s,9r,11e,13e,15s,16s)-16-[(2r,3s,4r)-4-[(2r,4r,5s,6r)-4-{[(2s,4r,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1z,3e)-penta-1,3-dien-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

(3z,5e,7r,8s,9r,11e,13e,15s,16s)-16-[(2r,3s,4r)-4-[(2r,4r,5s,6r)-4-{[(2s,4r,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1z,3e)-penta-1,3-dien-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

C43H68O12 (776.4710528)


   

3,4,5-trihydroxy-6-[(5,12,16,23,27-pentahydroxy-2,13,24-trioxo-1,6,12,17,23,28-hexaazacyclotritriaconta-5,16,27-trien-1-yl)oxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[(5,12,16,23,27-pentahydroxy-2,13,24-trioxo-1,6,12,17,23,28-hexaazacyclotritriaconta-5,16,27-trien-1-yl)oxy]oxane-2-carboxylic acid

C33H56N6O15 (776.3803466)


   

(4s,6z,8z,10e,12r,20r,22z,24r,25s,26e,28z)-24,25-dihydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

(4s,6z,8z,10e,12r,20r,22z,24r,25s,26e,28z)-24,25-dihydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

C43H56N2O11 (776.3883906000001)


   

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

(2r,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

C42H64O13 (776.4346694)


   

24,25-dihydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

24,25-dihydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

C43H56N2O11 (776.3883906000001)


   

(4s,6r,8z,10z,12e,14r,22r,24r,26z,28r,29s,30e,32z)-6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis[(1e)-prop-1-en-1-yl]-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

(4s,6r,8z,10z,12e,14r,22r,24r,26z,28r,29s,30e,32z)-6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis[(1e)-prop-1-en-1-yl]-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

C43H56N2O11 (776.3883906000001)


   

(4s,5s)-5-[(1r)-2-amino-1-hydroxyethyl]-2-[(3-{[3-amino-6-({3-amino-6-[(3,6-diamino-1-hydroxyhexylidene)amino]-1-hydroxyhexylidene}amino)-1-hydroxyhexylidene]amino}-4,5-dihydroxy-6-[(c-hydroxycarbonimidoyloxy)methyl]oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

(4s,5s)-5-[(1r)-2-amino-1-hydroxyethyl]-2-[(3-{[3-amino-6-({3-amino-6-[(3,6-diamino-1-hydroxyhexylidene)amino]-1-hydroxyhexylidene}amino)-1-hydroxyhexylidene]amino}-4,5-dihydroxy-6-[(c-hydroxycarbonimidoyloxy)methyl]oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

C31H60N12O11 (776.450429)


   

(8z,10z,26z,30z,32z)-6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis[(1e)-prop-1-en-1-yl]-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

(8z,10z,26z,30z,32z)-6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis[(1e)-prop-1-en-1-yl]-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

C43H56N2O11 (776.3883906000001)


   

(4s,5s)-5-[(1r)-2-amino-1-hydroxyethyl]-2-[(3-{[(3s)-3-amino-6-{[(3s)-3-amino-6-{[(3s)-3,6-diamino-1-hydroxyhexylidene]amino}-1-hydroxyhexylidene]amino}-1-hydroxyhexylidene]amino}-4-hydroxy-5-(c-hydroxycarbonimidoyloxy)-6-(hydroxymethyl)oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

(4s,5s)-5-[(1r)-2-amino-1-hydroxyethyl]-2-[(3-{[(3s)-3-amino-6-{[(3s)-3-amino-6-{[(3s)-3,6-diamino-1-hydroxyhexylidene]amino}-1-hydroxyhexylidene]amino}-1-hydroxyhexylidene]amino}-4-hydroxy-5-(c-hydroxycarbonimidoyloxy)-6-(hydroxymethyl)oxan-2-yl)amino]-4,5-dihydro-3h-imidazole-4-carboxylic acid

C31H60N12O11 (776.450429)


   

6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis(prop-1-en-1-yl)-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

6,24,28,29-tetrahydroxy-14-methoxy-5,5,23,23-tetramethyl-4,22-bis(prop-1-en-1-yl)-3,17,21,35-tetraoxa-37,38-diazatricyclo[32.2.1.1¹⁶,¹⁹]octatriaconta-1(36),8,10,12,16(38),18,26,30,32,34(37)-decaene-2,20-dione

C43H56N2O11 (776.3883906000001)


   

(2s)-2-{[(2s,3r)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-[(2-{[(2s)-2-amino-1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1,3-dihydroxybutylidene]amino}-4-methylpentanoic acid

(2s)-2-{[(2s,3r)-2-({[(2s)-1-[(2s)-2-{[(2s)-2-[(2-{[(2s)-2-amino-1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1,3-dihydroxybutylidene]amino}-4-methylpentanoic acid

C36H56N8O11 (776.4068346)


   

(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxydecylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

(3as,7as)-n-(5-carbamimidamido-1-hydroxypentan-2-yl)-6-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-[(2s)-2-[(1-hydroxydecylidene)amino]-3-(4-hydroxyphenyl)propanoyl]-octahydroindole-2-carboximidic acid

C39H64N6O10 (776.4683684)


   

5-[5-(acetyloxy)-3-methylpent-3-en-1-yl]-1,1,4a,6-tetramethyl-3-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl 2-methylbut-2-enoate

5-[5-(acetyloxy)-3-methylpent-3-en-1-yl]-1,1,4a,6-tetramethyl-3-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-2,3,4,5,8,8a-hexahydronaphthalen-2-yl 2-methylbut-2-enoate

C41H60O14 (776.398286)


   

6-hydroxy-7-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

6-hydroxy-7-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

C42H64O13 (776.4346694)


   

(2s,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[(5,12,16,23,27-pentahydroxy-2,13,24-trioxo-1,6,12,17,23,28-hexaazacyclotritriaconta-5,16,27-trien-1-yl)oxy]oxane-2-carboxylic acid

(2s,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[(5,12,16,23,27-pentahydroxy-2,13,24-trioxo-1,6,12,17,23,28-hexaazacyclotritriaconta-5,16,27-trien-1-yl)oxy]oxane-2-carboxylic acid

C33H56N6O15 (776.3803466)


   

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

(2s,4as,4br,6r,7r,10ar)-6-hydroxy-7-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6s)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-2,4b-dimethyl-2-(2-methylfuran-3-yl)-4,4a,5,6,7,8,10,10a-octahydro-3h-phenanthren-1-one

C42H64O13 (776.4346694)


   

(3e,5z,7r,8s,9s,11z,13z,15s,16r)-16-[(3r,4s)-4-[(2r,4r,5s,6r)-4-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1e,3e)-penta-1,3-dien-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

(3e,5z,7r,8s,9s,11z,13z,15s,16r)-16-[(3r,4s)-4-[(2r,4r,5s,6r)-4-{[(2s,4r,5s,6r)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-2-hydroxy-5-methyl-6-[(1e,3e)-penta-1,3-dien-1-yl]oxan-2-yl]-3-hydroxypentan-2-yl]-8-hydroxy-3,15-dimethoxy-5,7,9,11-tetramethyl-1-oxacyclohexadeca-3,5,11,13-tetraen-2-one

C43H68O12 (776.4710528)


   

(6z,8z,22z,26z,28z)-24,25-dihydroxy-4,20-bis[(4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

(6z,8z,22z,26z,28z)-24,25-dihydroxy-4,20-bis[(4e)-3-hydroxy-2-methylhex-4-en-2-yl]-12-methoxy-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,14(34),16,22,26,28,30(33)-decaene-2,18-dione

C43H56N2O11 (776.3883906000001)