Exact Mass: 773.6172316

Exact Mass Matches: 773.6172316

Found 500 metabolites which its exact mass value is equals to given mass value 773.6172316, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(18:0/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(18:0/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/20:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:0/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/20:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(15:0/20:1(11Z))

(2-{[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C43H84NO8P (773.5934234)


PC(15:0/20:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/20:1(11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:0/P-18:0)

trimethyl[2-({2-[(1Z)-octadec-1-en-1-yloxy]-3-(octadecanoyloxy)propyl phosphonato}oxy)ethyl]azanium

C44H88NO7P (773.6298067999999)


PC(18:0/P-18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/P-18:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(20:0/P-16:0)

[2-({2-[(1Z)-hexadec-1-en-1-yloxy]-3-(icosanoyloxy)propyl phosphonato}oxy)ethyl]trimethylazanium

C44H88NO7P (773.6298067999999)


PC(20:0/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:0/P-16:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(20:1(11Z)/15:0)

(2-{[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C43H84NO8P (773.5934234)


PC(20:1(11Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:1(11Z)/15:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(14:0/24:1(15Z))

(2-aminoethoxy)[(2R)-2-[(15Z)-tetracos-15-enoyloxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(14:0/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/24:1(15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:0/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/24:1(15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(14:1(9Z)/24:0)

(2-aminoethoxy)[(2R)-2-(tetracosanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(14:1(9Z)/24:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/24:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the lignoceric acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:1(9Z)/24:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(14:1(9Z)/24:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one tetracosanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:0/22:1(13Z))

(2-aminoethoxy)[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-(hexadecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(16:0/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/22:1(13Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of erucic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/22:1(13Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/22:1(13Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of erucic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the erucic acid moiety is derived from seed oils and avocados. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(16:1(9Z)/22:0)

(2-aminoethoxy)[(2R)-2-(docosanoyloxy)-3-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(16:1(9Z)/22:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/22:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(11Z)/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(18:1(11Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/20:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(18:1(9Z)/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/20:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:0/18:1(11Z))

(2-aminoethoxy)[(2R)-3-(icosanoyloxy)-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(20:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/18:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:0/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/18:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(icosanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(20:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/18:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of oleic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:1(11Z)/18:0)

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(20:1(11Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/18:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(22:0/16:1(9Z))

(2-aminoethoxy)[(2R)-3-(docosanoyloxy)-2-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(22:0/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:0/16:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(22:1(13Z)/16:0)

(2-aminoethoxy)[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-(hexadecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(22:1(13Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:1(13Z)/16:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(24:0/14:1(9Z))

(2-aminoethoxy)[(2R)-3-(tetracosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(24:0/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:0/14:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(24:1(15Z)/14:0)

(2-aminoethoxy)[(2R)-3-[(15Z)-tetracos-15-enoyloxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE(24:1(15Z)/14:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/14:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PC(P-16:0/20:0)

(2-{[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H88NO7P (773.6298067999999)


PC(P-16:0/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/20:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of arachidic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-16:0/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/20:0), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of arachidic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(P-18:0/18:0)

trimethyl(2-{[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H88NO7P (773.6298067999999)


PC(P-18:0/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/18:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:0/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/18:0), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of stearic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(O-16:1(9Z)/20:0)

(2-{[(2R)-3-[(9Z)-hexadec-9-en-1-yloxy]-2-(icosanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C44H88NO7P (773.6298067999999)


PC(O-16:1(9Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-16:1(9Z)/20:0), in particular, consists of one chain of Palmitoleyl alcohol at the C-1 position and one chain of arachidic acid at the C-2 position. The Palmitoleyl alcohol moiety is derived from whale oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-16:1(9Z)/20:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-16:1(9Z)/20:0), in particular, consists of one chain of Palmitoleyl alcohol at the C-1 position and one chain of arachidic acid at the C-2 position. The Palmitoleyl alcohol moiety is derived from whale oil, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(O-18:1(9Z)/18:0)

trimethyl(2-{[(2R)-3-[(9Z)-octadec-9-en-1-yloxy]-2-(octadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C44H88NO7P (773.6298067999999)


PC(O-18:1(9Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-18:1(9Z)/18:0), in particular, consists of one chain of Oleyl alcohol at the C-1 position and one chain of stearic acid at the C-2 position. The Oleyl alcohol moiety is derived from beef fat, fish oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-18:1(9Z)/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-18:1(9Z)/18:0), in particular, consists of one chain of Oleyl alcohol at the C-1 position and one chain of stearic acid at the C-2 position. The Oleyl alcohol moiety is derived from beef fat, fish oil, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(15:0/22:1(13Z))

{2-[(13Z)-docos-13-enoyloxy]-3-(pentadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe(15:0/22:1(13Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(15:0/22:1(13Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:1(13Z)/15:0)

{3-[(13Z)-docos-13-enoyloxy]-2-(pentadecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe(22:1(13Z)/15:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:1(13Z)/15:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:0/18:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(18:0/18:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(18:0/18:1(9Z)), in particular, consists of one octadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(18:0/18:1(11Z))

[2-(dimethylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(18:0/18:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(18:0/18:1(11Z)), in particular, consists of one octadecanoyl chain to the C-1 atom, and one 11Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(14:1(9Z)/22:0)

[2-(dimethylamino)ethoxy][2-(docosanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(14:1(9Z)/22:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(14:1(9Z)/22:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one docosanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(16:0/20:1(11Z))

[2-(dimethylamino)ethoxy][3-(hexadecanoyloxy)-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(16:0/20:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(16:0/20:1(11Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 11Z-eicosenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(16:1(9Z)/20:0)

[2-(dimethylamino)ethoxy]({3-[(9Z)-hexadec-9-enoyloxy]-2-(icosanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(16:1(9Z)/20:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(16:1(9Z)/20:0), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one eicosanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(14:0/22:1(13Z))

[2-(dimethylamino)ethoxy]({2-[(13Z)-docos-13-enoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(14:0/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(14:0/22:1(13Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(11Z)/18:0)

[2-(dimethylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-(octadecanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(18:1(11Z)/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(11Z)/18:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(9Z)/18:0)

PE-NMe2(18:1(9Z)/18:0)

C43H84NO8P (773.5934234)


PE-NMe2(18:1(9Z)/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(9Z)/18:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:0/16:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-hexadec-9-enoyloxy]-3-(icosanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(20:0/16:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:0/16:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:1(11Z)/16:0)

[2-(dimethylamino)ethoxy][2-(hexadecanoyloxy)-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(20:1(11Z)/16:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:1(11Z)/16:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:0/14:1(9Z))

[2-(dimethylamino)ethoxy][3-(docosanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(22:0/14:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:0/14:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(22:1(13Z)/14:0)

[2-(dimethylamino)ethoxy]({3-[(13Z)-docos-13-enoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C43H84NO8P (773.5934234)


PE-NMe2(22:1(13Z)/14:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/14:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PC(18:1(9Z)/17:0)

(2-{[2-(heptadecanoyloxy)-3-(octadec-9-enoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C43H84NO8P (773.5934234)


   

Phosphatidylethanolamine 18:0-20:1

Phosphatidylethanolamine 18:0-20:1

C43H84NO8P (773.5934234)


   

Phosphatidylcholine alkyl 16:0-20:1

Phosphatidylcholine alkyl 16:0-20:1

C44H88NO7P (773.6298067999999)


   

Phosphatidylcholine alkyl 18:0-18:1

Phosphatidylcholine alkyl 18:0-18:1

C44H88NO7P (773.6298067999999)


   

PC 35:1

1-heptadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


Found in mouse lung; TwoDicalId=1070; MgfFile=160901_Lung_AA_Neg_20; MgfId=1196

   

termitomycesphin F

N-(2R-hydroxy-octadecanoyl)-1-beta-glucosyl-8-hydroxy,9-methyl-sphing-4E-enine

C43H83NO10 (773.6016658)


   
   
   

Astrocerebroside A|Astrocerebrosides A

Astrocerebroside A|Astrocerebrosides A

C43H83NO10 (773.6016658)


   

PE 38:1

Eicosanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxo-9-octadecenyl)oxy]ethyl ester, [R-(Z)]-

C43H84NO8P (773.5934234)


Found in mouse brain; TwoDicalId=703; MgfFile=160720_brain_EPA_08_Neg; MgfId=1958

   
   
   

Phosphatidylethanolamine (22:0/16:1) Abbr: BPoPE

Phosphatidylethanolamine (22:0/16:1) Abbr: BPoPE

C43H84NO8P (773.5934234)


   

PC(17:0/18:1)

3,5,8-Trioxa-4-phosphahexacos-17-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxoheptadecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z)]-

C43H84NO8P (773.5934234)


   

PC(17:1/18:0)[U]

3,5,9-Trioxa-4-phosphahexacos-18-en-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxooctadecyl)oxy]-, inner salt, 4-oxide, (Z)-

C43H84NO8P (773.5934234)


   

PC(O-16:0/20:1)

3,5,8-Trioxa-4-phosphaoctacos-17-en-1-aminium, 7-[(hexadecyloxy)methyl]-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, [R-(Z)]-

C44H88NO7P (773.6298067999999)


   

PE(20:0/18:1)

Eicosanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-[(1-oxo-11-octadecenyl)oxy]propyl ester, [R-(Z)]-

C43H84NO8P (773.5934234)


   

PE(16:0/22:1)

13-Docosenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]-

C43H84NO8P (773.5934234)


   

PE(18:0/20:1)

11-Eicosenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxooctadecyl)oxy]ethyl ester, [R-(Z)]-

C43H84NO8P (773.5934234)


   

PE(18:0/20:1)[U]

11-Eicosenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxooctadecyl)oxy]ethyl ester, (Z)-

C43H84NO8P (773.5934234)


   

PE(18:1/20:0)

Eicosanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxo-9-octadecenyl)oxy]ethyl ester, [R-(Z)]-

C43H84NO8P (773.5934234)


A phosphatidylethanolamine 38:1 in which the acyl group at C-1 contains 18 carbons and 1 double bond while that at C-2 contains 20 carbons and no double bonds.

   

PE(18:1/20:0)[U]

Eicosanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-[(1-oxo-9-octadecenyl)oxy]propyl ester, (Z)-

C43H84NO8P (773.5934234)


   

Lecithin

1-Eicosenoyl-2-pentadecanoyl-sn-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

Lecithin

1-(1-Enyl-palmitoyl)-2-arachidonyl-sn-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PE(38:1)

1-lignoceroyl-2-myristoleoyl-sn-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PC(13:0/22:1(11Z))

1-tridecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(14:1(9Z)/21:0)

1-(9Z-tetradecenoyl)-2-heneicosanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(15:1(9Z)/20:0)

1-(9Z-pentadecenoyl)-2-eicosanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(16:0/19:1(9Z))

1-hexadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(16:1(9Z)/19:0)

1-(9Z-hexadecenoyl)-2-nonadecanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(17:1(9Z)/18:0)

1-(9Z-heptadecenoyl)-2-octadecanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(18:0/17:1(9Z))

1-octadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(18:1(9Z)/17:0)

1-(9Z-octadecenoyl)-2-heptadecanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(19:0/16:1(9Z))

1-nonadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(19:1(9Z)/16:0)

1-(9Z-nonadecenoyl)-2-hexadecanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(20:0/15:1(9Z))

1-eicosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(21:0/14:1(9Z))

1-heneicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(22:1(11Z)/13:0)

1-(11Z-docosenoyl)-2-tridecanoyl-glycero-3-phosphocholine

C43H84NO8P (773.5934234)


   

PC(O-16:0/20:1(11Z))

1-hexadecyl-2-(11Z-eicosenoyl)-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PC(O-18:0/18:1(9Z))

1-octadecyl-2-(9Z-octadecenoyl)-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PC(O-20:0/16:1(9Z))

1-eicosyl-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PC(P-20:0/16:0)

1-(1Z-eicosenyl)-2-hexadecanoyl-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PE(16:0/22:1(11Z))

1-hexadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(17:1(9Z)/21:0)

1-(9Z-heptadecenoyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(19:0/19:1(9Z))

1-nonadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(19:1(9Z)/19:0)

1-(9Z-nonadecenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(21:0/17:1(9Z))

1-heneicosanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(22:1(11Z)/16:0)

1-(11Z-docosenoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

PE(O-20:0/19:1(9Z))

1-eicosyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C44H88NO7P (773.6298067999999)


   

PE(P-18:0/21:0)

1-(1Z-octadecenyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C44H88NO7P (773.6298067999999)


   

PE(P-20:0/19:0)

1-(1Z-eicosenyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C44H88NO7P (773.6298067999999)


   

PC O-36:1

1-(9Z-hexadecenyl)-2-eicosanoyl-sn-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

PE O-39:1

1-(1Z-octadecenyl)-2-heneicosanoyl-glycero-3-phosphoethanolamine

C44H88NO7P (773.6298067999999)


   

HexCer 38:0;O3

N-(2R-hydroxyeicosanoyl)-1-beta-glucosyl-octadecasphinganine

C44H87NO9 (773.6380492)


   

3,3,5,5-Tetrabromo-5-(3,5-dibromophenyl)-1,1:3,1-terphenyl

3,3,5,5-Tetrabromo-5-(3,5-dibromophenyl)-1,1:3,1-terphenyl

C24H12Br6 (773.6039112)


   

1-hexadecyl-2-[(9Z)-eicosenoyl]-sn-glycero-3-phosphocholine

1-hexadecyl-2-[(9Z)-eicosenoyl]-sn-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


A phosphatidylcholine O-36:1 in which the alkyl and acyl groups specified at positions 1 and 2 are hexadecyl and (9Z)-eicosenoyl respectively.

   

[3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C43H84NO8P (773.5934234)


   

PE-NMe2(18:1(9Z)/18:0)

PE-NMe2(18:1(9Z)/18:0)

C43H84NO8P (773.5934234)


   

Phophatidylethanolamine(24:0/14:1)

Phophatidylethanolamine(24:0/14:1)

C43H84NO8P (773.5934234)


   

[2-heptadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(E)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[(2R)-1,1,2,3,3-Pentadeuterio-3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-1,1,2,3,3-Pentadeuterio-3-heptadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

N-icosanoyl-1-oleoyl-sn-glycero-3-phosphoethanolamine

N-icosanoyl-1-oleoyl-sn-glycero-3-phosphoethanolamine

C43H84NO8P (773.5934234)


   

N-henicosanoyl-1-O-beta-D-glucosyl-4-hydroxy-15-methylhexadecasphinganine

N-henicosanoyl-1-O-beta-D-glucosyl-4-hydroxy-15-methylhexadecasphinganine

C44H87NO9 (773.6380492)


   

[2-[(Z)-hexacos-15-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexacos-15-enoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C43H84NO8P (773.5934234)


   
   
   
   
   
   
   

HexCer 22:0;2O/16:0;O

HexCer 22:0;2O/16:0;O

C44H87NO9 (773.6380492)


   

[2-[(Z)-octacos-17-enoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octacos-17-enoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

HexCer 19:0;2O/19:0;O

HexCer 19:0;2O/19:0;O

C44H87NO9 (773.6380492)


   

HexCer 16:0;2O/22:0;O

HexCer 16:0;2O/22:0;O

C44H87NO9 (773.6380492)


   

HexCer 18:0;2O/20:0;O

HexCer 18:0;2O/20:0;O

C44H87NO9 (773.6380492)


   

HexCer 20:0;2O/18:0;O

HexCer 20:0;2O/18:0;O

C44H87NO9 (773.6380492)


   

HexCer 21:0;2O/17:0;O

HexCer 21:0;2O/17:0;O

C44H87NO9 (773.6380492)


   

HexCer 17:0;2O/21:0;O

HexCer 17:0;2O/21:0;O

C44H87NO9 (773.6380492)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HexCer 8:0;3O/29:1;(2OH)

HexCer 8:0;3O/29:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 9:0;3O/28:1;(2OH)

HexCer 9:0;3O/28:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 13:1;3O/24:0;(2OH)

HexCer 13:1;3O/24:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 13:0;3O/24:1;(2OH)

HexCer 13:0;3O/24:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 12:1;3O/25:0;(2OH)

HexCer 12:1;3O/25:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 10:0;3O/27:1;(2OH)

HexCer 10:0;3O/27:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 11:0;3O/26:1;(2OH)

HexCer 11:0;3O/26:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 12:0;3O/25:1;(2OH)

HexCer 12:0;3O/25:1;(2OH)

C43H83NO10 (773.6016658)


   

[3-[(Z)-octacos-17-enoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-octacos-17-enoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] icosanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetracosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] tetracosanoate

C44H88NO7P (773.6298067999999)


   

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tricos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tricos-4-ene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] docosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] docosanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] octadecanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-docos-13-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] tridecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] tridecanoate

C44H88NO7P (773.6298067999999)


   

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (Z)-heptadec-9-enoate

C44H88NO7P (773.6298067999999)


   

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyhenicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyhenicosa-4,8,12-triene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-octadec-9-enoate

C44H88NO7P (773.6298067999999)


   

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentacosane-1-sulfonic acid

2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentacosane-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tricosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tricosa-4,8-diene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] nonadecanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-tetracos-13-enoate

C44H88NO7P (773.6298067999999)


   

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentacosa-4,8,12-triene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentacos-4-ene-1-sulfonic acid

(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentacos-4-ene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-hexacos-15-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-octacos-17-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-octacos-17-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-icos-11-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (Z)-hexadec-9-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-nonadec-9-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (Z)-pentadec-9-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] heptadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] heptadecanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (Z)-tridec-9-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (Z)-tetradec-9-enoate

C44H88NO7P (773.6298067999999)


   

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tricosane-1-sulfonic acid

3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tricosane-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentacosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentacosa-4,8-diene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] pentadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] pentadecanoate

C44H88NO7P (773.6298067999999)


   

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyhenicosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyhenicosa-4,8-diene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhenicosane-1-sulfonic acid

2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyhenicosane-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] hexacosanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] undecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octacos-17-enoxy]propan-2-yl] undecanoate

C44H88NO7P (773.6298067999999)


   

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyhenicos-4-ene-1-sulfonic acid

(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyhenicos-4-ene-1-sulfonic acid

C47H83NO5S (773.5991627999999)


   

[2-henicosanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-henicosanoyloxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-hexadecanoyloxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hexadecanoyloxy-3-[(Z)-icos-11-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-henicosoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosoxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-heptadecoxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-tricosanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-tricosanoyloxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-[(Z)-heptadec-9-enoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-[(Z)-henicos-11-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-henicos-11-enoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-icosoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-heptadecanoyloxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-dodecanoyloxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-dodecanoyloxy-3-[(Z)-tetracos-13-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-decoxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decoxy-2-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-docosoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-[(Z)-docos-13-enoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-tricosoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-tricosoxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-dodecoxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecoxy-2-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-decanoyloxy-3-[(Z)-hexacos-15-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-decanoyloxy-3-[(Z)-hexacos-15-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

2-[4-[10,13-dimethyl-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

2-[4-[10,13-dimethyl-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

C50H79NO5 (773.5957923999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (Z)-octacos-17-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (Z)-octacos-17-enoate

C43H84NO8P (773.5934234)


   

Cer 14:0;2O/20:5;(3OH)(FA 16:5)

Cer 14:0;2O/20:5;(3OH)(FA 16:5)

C50H79NO5 (773.5957923999999)


   

Cer 14:0;2O/16:4;(3OH)(FA 20:6)

Cer 14:0;2O/16:4;(3OH)(FA 20:6)

C50H79NO5 (773.5957923999999)


   

Cer 14:0;2O/16:5;(3OH)(FA 20:5)

Cer 14:0;2O/16:5;(3OH)(FA 20:5)

C50H79NO5 (773.5957923999999)


   

Cer 16:0;2O/18:5;(3OH)(FA 16:5)

Cer 16:0;2O/18:5;(3OH)(FA 16:5)

C50H79NO5 (773.5957923999999)


   

Cer 15:0;2O/16:5;(3OH)(FA 19:5)

Cer 15:0;2O/16:5;(3OH)(FA 19:5)

C50H79NO5 (773.5957923999999)


   

Cer 14:0;2O/18:5;(3OH)(FA 18:5)

Cer 14:0;2O/18:5;(3OH)(FA 18:5)

C50H79NO5 (773.5957923999999)


   

Cer 14:0;2O/20:6;(3OH)(FA 16:4)

Cer 14:0;2O/20:6;(3OH)(FA 16:4)

C50H79NO5 (773.5957923999999)


   

Cer 18:0;2O/16:5;(3OH)(FA 16:5)

Cer 18:0;2O/16:5;(3OH)(FA 16:5)

C50H79NO5 (773.5957923999999)


   

Cer 15:0;2O/19:5;(3OH)(FA 16:5)

Cer 15:0;2O/19:5;(3OH)(FA 16:5)

C50H79NO5 (773.5957923999999)


   

Cer 16:0;2O/16:5;(3OH)(FA 18:5)

Cer 16:0;2O/16:5;(3OH)(FA 18:5)

C50H79NO5 (773.5957923999999)


   
   

4-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-henicosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-henicosanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-nonadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-nonadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(Z)-henicos-11-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-henicos-11-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-heptadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-heptadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

HexCer 25:1;3O/12:0;(2OH)

HexCer 25:1;3O/12:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 25:0;3O/12:1;(2OH)

HexCer 25:0;3O/12:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 22:1;3O/15:0;(2OH)

HexCer 22:1;3O/15:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 20:1;3O/17:0;(2OH)

HexCer 20:1;3O/17:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 15:0;3O/22:1;(2OH)

HexCer 15:0;3O/22:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 15:1;3O/22:0;(2OH)

HexCer 15:1;3O/22:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 17:1;3O/20:0;(2OH)

HexCer 17:1;3O/20:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 19:1;3O/18:0;(2OH)

HexCer 19:1;3O/18:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 18:1;3O/19:0;(2OH)

HexCer 18:1;3O/19:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 16:0;3O/21:1;(2OH)

HexCer 16:0;3O/21:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 22:0;3O/15:1;(2OH)

HexCer 22:0;3O/15:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 24:1;3O/13:0;(2OH)

HexCer 24:1;3O/13:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 18:0;3O/19:1;(2OH)

HexCer 18:0;3O/19:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 23:1;3O/14:0;(2OH)

HexCer 23:1;3O/14:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 14:0;3O/23:1;(2OH)

HexCer 14:0;3O/23:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 14:1;3O/23:0;(2OH)

HexCer 14:1;3O/23:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 16:1;3O/21:0;(2OH)

HexCer 16:1;3O/21:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 17:0;3O/20:1;(2OH)

HexCer 17:0;3O/20:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 21:1;3O/16:0;(2OH)

HexCer 21:1;3O/16:0;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 19:0;3O/18:1;(2OH)

HexCer 19:0;3O/18:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 24:0;3O/13:1;(2OH)

HexCer 24:0;3O/13:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 23:0;3O/14:1;(2OH)

HexCer 23:0;3O/14:1;(2OH)

C43H83NO10 (773.6016658)


   

HexCer 21:0;3O/16:1;(2OH)

HexCer 21:0;3O/16:1;(2OH)

C43H83NO10 (773.6016658)


   

[2-octadecanoyloxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-octadecanoyloxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tricosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] tricosanoate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-docos-13-enoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] pentacosanoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] henicosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] henicosanoate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octadec-9-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-[(Z)-hexadec-9-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-docosanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-docosanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-hexadecoxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecoxy-2-[(Z)-icos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-henicos-11-enoate

C44H88NO7P (773.6298067999999)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-triacont-19-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-triacont-19-enoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] icosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] icosanoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] tricosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] tricosanoate

C43H84NO8P (773.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C43H84NO8P (773.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] henicosanoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentacosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentacosanoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetracosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetracosanoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] nonadecanoate

C43H84NO8P (773.5934234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C43H84NO8P (773.5934234)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] docosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] docosanoate

C43H84NO8P (773.5934234)


   

[3-hexadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (E)-icos-11-enoate

C43H84NO8P (773.5934234)


   

[2-[(Z)-octadec-4-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octadec-4-enoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[3-hexadecoxy-2-[(Z)-icos-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecoxy-2-[(Z)-icos-4-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[2-[(Z)-tetracos-13-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-tetracos-13-enoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[3-henicosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-henicosanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[2-[(Z)-docos-13-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[2-[(Z)-henicos-11-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-henicos-11-enoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[3-docosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[3-icosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-icosanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[2-[(Z)-icos-11-enoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-icos-11-enoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E)-henicosa-9,11-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-2-henicosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-henicosanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] icosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-4-enoyl]oxypropan-2-yl] icosanoate

C43H84NO8P (773.5934234)


   

[(2R)-2-heptadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-heptadecanoyloxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

4-[2-dodecanoyloxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-dodecanoyloxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H84NO8P (773.5934234)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-heptadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-heptadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-tetradec-9-enoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-tetradec-9-enoyl]oxy-3-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-13-enoate

C43H84NO8P (773.5934234)


   

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] tricosanoate

C43H84NO8P (773.5934234)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

C43H84NO8P (773.5934234)


   

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-2-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(E)-tetradec-9-enoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-tetradec-9-enoyl]oxy-2-[(14E,17E,20E)-tricosa-14,17,20-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-octadecanoyloxypropyl] (E)-icos-11-enoate

C43H84NO8P (773.5934234)


   

4-[2-nonadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-nonadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-pentacosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-octadecanoyloxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

[(2R)-3-[(E)-hexadec-1-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-1-enoxy]-2-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

4-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-tetradecanoyloxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-tetradecanoyloxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] henicosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] henicosanoate

C44H88NO7P (773.6298067999999)


   

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E)-henicosa-9,11-dienoyl]oxy-3-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-henicos-9-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-tetradecanoyloxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-tetradecanoyloxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(13E,16E,19E)-pentacosa-13,16,19-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-docos-11-enoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-docos-11-enoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-heptadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-heptadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] tricosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] tricosanoate

C44H88NO7P (773.6298067999999)


   

4-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-2-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-nonadec-9-enoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-nonadec-9-enoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-hexadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(14E,16E)-tricosa-14,16-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-henicosanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-henicosanoyloxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-dodecanoyloxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(17E,20E,23E)-hexacosa-17,20,23-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] nonadecanoate

C44H88NO7P (773.6298067999999)


   

4-[3-[(E)-docos-11-enoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-docos-11-enoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

[(2R)-2-hexadecanoyloxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(E)-icos-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H88NO7P (773.6298067999999)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-pentacos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-[(E)-nonadec-9-enoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-nonadec-9-enoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(E)-tricos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-henicosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-henicosanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[3-nonadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-nonadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-henicos-9-enoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C47H83NO7 (773.6169207999999)


   

2-[[3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3,4-dihydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H86N2O7P+ (773.6172316)


   

2-[[(8E,12E)-3,4-dihydroxy-2-(icosanoylamino)octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-3,4-dihydroxy-2-(icosanoylamino)octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H86N2O7P+ (773.6172316)


   

2-[[(E)-3,4-dihydroxy-2-[[(Z)-icos-11-enoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-3,4-dihydroxy-2-[[(Z)-icos-11-enoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C43H86N2O7P+ (773.6172316)


   

1-(1Z-hexadecenyl)-2-eicosanoyl-glycero-3-phosphocholine

1-(1Z-hexadecenyl)-2-eicosanoyl-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

1-(9Z-hexadecenyl)-2-eicosanoyl-sn-glycero-3-phosphocholine

1-(9Z-hexadecenyl)-2-eicosanoyl-sn-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

1-Oleyl-2-stearoyl-sn-glycero-3-phosphocholine

1-Oleyl-2-stearoyl-sn-glycero-3-phosphocholine

C44H88NO7P (773.6298067999999)


   

phosphatidylcholine O-36:1

phosphatidylcholine O-36:1

C44H88NO7P (773.6298067999999)


A glycerophosphocholine that is an alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 36 carbons and 1 double bond.

   

MePC(35:1)

MePC(12:1(1)_23:0)

C44H88NO7P (773.6298067999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(38:0)

Hex1Cer(t20:0_18:0)

C44H87NO9 (773.6380492)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

LPC(36:1)

LPC(36:1)

C44H88NO7P (773.6298067999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

GalCer 14:0;O2/24:0;O

GalCer 14:0;O2/24:0;O

C44H87NO9 (773.6380492)


   

GalCer 14:0;O3/24:0

GalCer 14:0;O3/24:0

C44H87NO9 (773.6380492)


   

GalCer 15:0;O2/23:0;O

GalCer 15:0;O2/23:0;O

C44H87NO9 (773.6380492)


   

GalCer 15:0;O3/23:0

GalCer 15:0;O3/23:0

C44H87NO9 (773.6380492)


   

GalCer 16:0;O2/22:0;O

GalCer 16:0;O2/22:0;O

C44H87NO9 (773.6380492)


   

GalCer 16:0;O3/22:0

GalCer 16:0;O3/22:0

C44H87NO9 (773.6380492)


   

GalCer 17:0;O2/21:0;O

GalCer 17:0;O2/21:0;O

C44H87NO9 (773.6380492)


   

GalCer 17:0;O3/21:0

GalCer 17:0;O3/21:0

C44H87NO9 (773.6380492)


   

GalCer 18:0;O2/20:0;O

GalCer 18:0;O2/20:0;O

C44H87NO9 (773.6380492)


   

GalCer 18:0;O3/20:0

GalCer 18:0;O3/20:0

C44H87NO9 (773.6380492)


   

GalCer 19:0;O2/19:0;O

GalCer 19:0;O2/19:0;O

C44H87NO9 (773.6380492)


   

GalCer 19:0;O3/19:0

GalCer 19:0;O3/19:0

C44H87NO9 (773.6380492)


   

GalCer 20:0;O2/18:0;O

GalCer 20:0;O2/18:0;O

C44H87NO9 (773.6380492)


   

GalCer 20:0;O3/18:0

GalCer 20:0;O3/18:0

C44H87NO9 (773.6380492)


   

GalCer 21:0;O2/17:0;O

GalCer 21:0;O2/17:0;O

C44H87NO9 (773.6380492)


   

GalCer 21:0;O3/17:0

GalCer 21:0;O3/17:0

C44H87NO9 (773.6380492)


   

GalCer 22:0;O2/16:0;O

GalCer 22:0;O2/16:0;O

C44H87NO9 (773.6380492)


   

GalCer 22:0;O3/16:0

GalCer 22:0;O3/16:0

C44H87NO9 (773.6380492)


   
   
   

GlcCer 14:0;O2/24:0;O

GlcCer 14:0;O2/24:0;O

C44H87NO9 (773.6380492)


   

GlcCer 14:0;O3/24:0

GlcCer 14:0;O3/24:0

C44H87NO9 (773.6380492)


   

GlcCer 15:0;O2/23:0;O

GlcCer 15:0;O2/23:0;O

C44H87NO9 (773.6380492)


   

GlcCer 15:0;O3/23:0

GlcCer 15:0;O3/23:0

C44H87NO9 (773.6380492)


   

GlcCer 16:0;O2/22:0;O

GlcCer 16:0;O2/22:0;O

C44H87NO9 (773.6380492)


   

GlcCer 16:0;O3/22:0

GlcCer 16:0;O3/22:0

C44H87NO9 (773.6380492)


   

GlcCer 17:0;O2/21:0;O

GlcCer 17:0;O2/21:0;O

C44H87NO9 (773.6380492)


   

GlcCer 17:0;O3/21:0

GlcCer 17:0;O3/21:0

C44H87NO9 (773.6380492)


   

GlcCer 18:0;O2/20:0;O

GlcCer 18:0;O2/20:0;O

C44H87NO9 (773.6380492)


   

GlcCer 18:0;O3/20:0

GlcCer 18:0;O3/20:0

C44H87NO9 (773.6380492)


   

GlcCer 19:0;O2/19:0;O

GlcCer 19:0;O2/19:0;O

C44H87NO9 (773.6380492)


   

GlcCer 19:0;O3/19:0

GlcCer 19:0;O3/19:0

C44H87NO9 (773.6380492)


   

GlcCer 20:0;O2/18:0;O

GlcCer 20:0;O2/18:0;O

C44H87NO9 (773.6380492)


   

GlcCer 20:0;O3/18:0

GlcCer 20:0;O3/18:0

C44H87NO9 (773.6380492)


   

GlcCer 21:0;O2/17:0;O

GlcCer 21:0;O2/17:0;O

C44H87NO9 (773.6380492)


   

GlcCer 21:0;O3/17:0

GlcCer 21:0;O3/17:0

C44H87NO9 (773.6380492)


   

GlcCer 22:0;O2/16:0;O

GlcCer 22:0;O2/16:0;O

C44H87NO9 (773.6380492)


   

GlcCer 22:0;O3/16:0

GlcCer 22:0;O3/16:0

C44H87NO9 (773.6380492)


   
   
   

HexCer 14:0;O2/24:0;2OH

HexCer 14:0;O2/24:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 14:0;O2/24:0;3OH

HexCer 14:0;O2/24:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 14:0;O2/24:0;O

HexCer 14:0;O2/24:0;O

C44H87NO9 (773.6380492)


   

HexCer 14:0;O3/24:0

HexCer 14:0;O3/24:0

C44H87NO9 (773.6380492)


   

HexCer 15:0;O2/23:0;2OH

HexCer 15:0;O2/23:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 15:0;O2/23:0;3OH

HexCer 15:0;O2/23:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 15:0;O2/23:0;O

HexCer 15:0;O2/23:0;O

C44H87NO9 (773.6380492)


   

HexCer 15:0;O3/23:0

HexCer 15:0;O3/23:0

C44H87NO9 (773.6380492)


   

HexCer 16:0;O2/22:0;2OH

HexCer 16:0;O2/22:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 16:0;O2/22:0;3OH

HexCer 16:0;O2/22:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 16:0;O2/22:0;O

HexCer 16:0;O2/22:0;O

C44H87NO9 (773.6380492)


   

HexCer 16:0;O3/22:0

HexCer 16:0;O3/22:0

C44H87NO9 (773.6380492)


   

HexCer 17:0;O2/21:0;2OH

HexCer 17:0;O2/21:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 17:0;O2/21:0;3OH

HexCer 17:0;O2/21:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 17:0;O2/21:0;O

HexCer 17:0;O2/21:0;O

C44H87NO9 (773.6380492)


   

HexCer 17:0;O3/21:0

HexCer 17:0;O3/21:0

C44H87NO9 (773.6380492)


   

HexCer 18:0;O2/20:0;2OH

HexCer 18:0;O2/20:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 18:0;O2/20:0;3OH

HexCer 18:0;O2/20:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 18:0;O2/20:0;O

HexCer 18:0;O2/20:0;O

C44H87NO9 (773.6380492)


   

HexCer 18:0;O3/20:0

HexCer 18:0;O3/20:0

C44H87NO9 (773.6380492)


   

HexCer 19:0;O2/19:0;2OH

HexCer 19:0;O2/19:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 19:0;O2/19:0;3OH

HexCer 19:0;O2/19:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 19:0;O2/19:0;O

HexCer 19:0;O2/19:0;O

C44H87NO9 (773.6380492)


   

HexCer 19:0;O3/19:0

HexCer 19:0;O3/19:0

C44H87NO9 (773.6380492)


   

HexCer 20:0;O2/18:0;2OH

HexCer 20:0;O2/18:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 20:0;O2/18:0;3OH

HexCer 20:0;O2/18:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 20:0;O2/18:0;O

HexCer 20:0;O2/18:0;O

C44H87NO9 (773.6380492)


   

HexCer 20:0;O3/18:0

HexCer 20:0;O3/18:0

C44H87NO9 (773.6380492)


   

HexCer 21:0;O2/17:0;2OH

HexCer 21:0;O2/17:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 21:0;O2/17:0;3OH

HexCer 21:0;O2/17:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 21:0;O2/17:0;O

HexCer 21:0;O2/17:0;O

C44H87NO9 (773.6380492)


   

HexCer 21:0;O3/17:0

HexCer 21:0;O3/17:0

C44H87NO9 (773.6380492)


   

HexCer 22:0;O2/16:0;2OH

HexCer 22:0;O2/16:0;2OH

C44H87NO9 (773.6380492)


   

HexCer 22:0;O2/16:0;3OH

HexCer 22:0;O2/16:0;3OH

C44H87NO9 (773.6380492)


   

HexCer 22:0;O2/16:0;O

HexCer 22:0;O2/16:0;O

C44H87NO9 (773.6380492)


   

HexCer 22:0;O3/16:0

HexCer 22:0;O3/16:0

C44H87NO9 (773.6380492)