Exact Mass: 770.4842921999999
Exact Mass Matches: 770.4842921999999
Found 98 metabolites which its exact mass value is equals to given mass value 770.4842921999999
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Notoginsenoside R2
Notoginsenoside R2 is found in tea. Notoginsenoside R2 is a constituent of Panax notoginseng (ginseng) Constituent of Panax notoginseng (ginseng). Notoginsenoside R2 is found in tea. Notoginsenoside R2 is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. Notoginsenoside R2 is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis.
Ginsenoside F3
Ginsenoside F3 is found in tea. Ginsenoside F3 is isolated from Panax species. Ginsenoside F3, a component of PPTGs (an minor saponin in the leaves of Panax ginseng), has immunoenhancing activity by regulating production and gene expression of type 1 cytokines (IL-2, IFN-gamma) and type 2 cytokines (IL-4 and IL-10)[1]. Ginsenoside F3, a component of PPTGs (an minor saponin in the leaves of Panax ginseng), has immunoenhancing activity by regulating production and gene expression of type 1 cytokines (IL-2, IFN-gamma) and type 2 cytokines (IL-4 and IL-10)[1].
Pseudoginsenoside RT3
Pseudoginsenoside RT3 is found in tea. Pseudoginsenoside RT3 is a constituent of Panax pseudo-ginseng.
Ginsenoside F5
Ginsenoside F5 is found in tea. Ginsenoside F5 is a constituent of Panax ginseng (ginseng) Ginsenoside F5, from crude extracts of flower buds of Panax ginseng, remarkably inhibits the growth of HL-60 cells by the apoptosis pathway[1]. Ginsenoside F5, from crude extracts of flower buds of Panax ginseng, remarkably inhibits the growth of HL-60 cells by the apoptosis pathway[1].
PA(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z))
PA(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z))
PA(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z))
PA(20:4(8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of osbond acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z))
PA(20:4(8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of clupanodonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:4(7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(22:4(7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z))
PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z))
PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(4Z,7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of osbond acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z))
PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z))
PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:5(7Z,10Z,13Z,16Z,19Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of clupanodonic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z))
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PA(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PA(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one 5Z,8Z,11Z-eicosatrienoyl chain to the C-1 atom, and one 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
2,6,10,14,24,28,32-Hentetracontaneheptone, 8,16,18,26,34,36-hexahydroxy-
Ginsenoside F3
Ginsenoside F3 is a triterpenoid saponin. Ginsenoside F3 is a natural product found in Panax ginseng and Aralia elata with data available. Isolated from Panax subspecies Ginsenoside F3 is found in tea. Annotation level-1 Ginsenoside F3, a component of PPTGs (an minor saponin in the leaves of Panax ginseng), has immunoenhancing activity by regulating production and gene expression of type 1 cytokines (IL-2, IFN-gamma) and type 2 cytokines (IL-4 and IL-10)[1]. Ginsenoside F3, a component of PPTGs (an minor saponin in the leaves of Panax ginseng), has immunoenhancing activity by regulating production and gene expression of type 1 cytokines (IL-2, IFN-gamma) and type 2 cytokines (IL-4 and IL-10)[1].
Notoginsenoside R2
Notoginsenoside R2 is a triterpenoid saponin. Notoginsenoside R2 is a natural product found in Panax notoginseng and Panax japonicus with data available. Notoginsenoside R2 is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. Notoginsenoside R2 is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis.
R-NOTOGINSENOSIDE R2
Ginsenoside F5
Ginsenoside F5 is a triterpenoid saponin. ginsenoside F5 is a natural product found in Panax ginseng with data available. Ginsenoside F5, from crude extracts of flower buds of Panax ginseng, remarkably inhibits the growth of HL-60 cells by the apoptosis pathway[1]. Ginsenoside F5, from crude extracts of flower buds of Panax ginseng, remarkably inhibits the growth of HL-60 cells by the apoptosis pathway[1].
3-O-alpha-L-rhamnopyranosyl-16-O-beta-D-xylopyranosyl-3beta,6alpha,16beta,(24S),25-pentahydroxycycloartane|capsicuside I
7beta,20,26-trihydroxy-(20S)-dammar-24E-en-3-O-alpha-L-arabinopyranosyl-(1->2)-beta-D-glucopyranoside
foetidinoside A|lanosta-9(11)-en-3beta,16beta,24R,25-tetraol 3-O-beta-D-xylopyranosyl-24-O-beta-D-glucopyranoside
(3beta,7beta)-7,18,20-trihydroxydammar-24-en-3-yl 2-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside|Tubeimoside C
NK154183A
A 24-membered macrolide antibiotic isolated from the fermentation broth of Streptomyces sp.NK154183. It exhibits antifungal and antitumour activity against the human colon adenocarcinoma.
C41H70O13_(3beta,5xi,6alpha,9xi,12beta)-3,12,20-Trihydroxydammar-24-en-6-yl 2-O-beta-D-xylopyranosyl-beta-D-glucopyranoside
(2S,3R,4S,5R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol
(2S,3R,4S,5R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol_major
(2S,3R,4S,5R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol_65.2\\%
(2S,3R,4S,5R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol_90.1\\%
(2S,3R,4S,5R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxyoxane-3,4,5-triol_81.6\\%
PA(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z))
PA(22:4(7Z,10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z))
Pseudoginsenoside RT3
PA 42:9
(4E,18E)-11,12,13,14,16,17,27a-heptahydroxy-6-(2-hydroxybutyl)-2,2,11,15,17,28-hexamethyl-2,3,3,3a,4,5,6,6,7,8,9,10,11,12,13,14,15,16,17,22,23,26,27,27a-tetracosahydro-20H-spiro[22,26-methanofuro[2,3-h][1,5]dioxacyclohexacosine-24,2-pyran]-20-one
[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl] 3-[(21S,22S)-11,26-diethyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-12,17,21-trimethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoate
C49H62N4O4 (770.4770811999999)
[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl] 3-[(21S,22S)-11-ethyl-4-hydroxy-16-[(1R)-1-hydroxyethyl]-12,17,19,21,26-pentamethyl-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoate
C49H62N4O4 (770.4770811999999)
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
(2R,3S,4R,5R,6S)-2-[(2R)-6-methyl-2-[(3R,5R,6R,8S,9S,10S,12S,13R,14S,17S)-3,6,12-trihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]hept-5-en-2-yl]oxy-6-[[(2R,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxane-3,4,5-triol
[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate
[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate
[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate
[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
2-[2,3-bis[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy]propoxy-hydroxyphosphoryl]oxyethyl-trimethylazanium
BisMePA(40:9)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved