Exact Mass: 767.4806

Exact Mass Matches: 767.4806

Found 394 metabolites which its exact mass value is equals to given mass value 767.4806, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(DiMe(9,3)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2,3-bis({[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy})propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(DiMe(9,3)/DiMe(9,3)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(DiMe(9,3)/DiMe(9,3)), in particular, consists of two chains of 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid at the C-1 and C-2 positions. The 10,13-epoxy-11-methylhexadeca-10,12-dienoic acid moieties are derived from fish oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PS(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-amino-3-({hydroxy[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C41H70NO10P (767.4737)


PS(15:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(15:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

(2S)-2-amino-3-({hydroxy[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphoryl}oxy)propanoic acid

C41H70NO10P (767.4737)


PS(20:5(5Z,8Z,11Z,14Z,17Z)/15:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,17Z)/15:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PE(14:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

(2-aminoethoxy)[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(14:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

(2-aminoethoxy)[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(14:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:0)

(2-aminoethoxy)[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(16:1(9Z)/PGJ2)

(2-aminoethoxy)[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(16:1(9Z)/PGJ2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(16:1(9Z)/PGJ2), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGJ2/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(PGJ2/16:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGJ2/16:1(9Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 9Z-hexadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H66NO11P (767.4373)


PS(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

(2S)-2-Amino-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoate

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H66NO11P (767.4373)


PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2S)-2-amino-3-{[hydroxy((2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy)phosphoryl]oxy}propanoic acid

C40H66NO11P (767.4373)


PS(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2S)-2-amino-3-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C40H66NO11P (767.4373)


PS(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/18:2(10E,12Z)+=O(9))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(DiMe(9,3)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(10E,12Z)+=O(9)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(18:2(10E,12Z)+=O(9)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(10E,12Z)+=O(9)/DiMe(9,3)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/18:2(9Z,11E)+=O(13))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(DiMe(9,3)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(9Z,11E)+=O(13)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(18:2(9Z,11E)+=O(13)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(9Z,11E)+=O(13)/DiMe(9,3)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/18:3(10,12,15)-OH(9))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(DiMe(9,3)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(10,12,15)-OH(9)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(18:3(10,12,15)-OH(9)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(10,12,15)-OH(9)/DiMe(9,3)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(DiMe(9,3)/18:3(9,11,15)-OH(13))

(2-aminoethoxy)[(2R)-3-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(DiMe(9,3)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(DiMe(9,3)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(9,11,15)-OH(13)/DiMe(9,3))

(2-aminoethoxy)[(2R)-2-{[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyl]oxy}-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propoxy]phosphinic acid

C41H70NO10P (767.4737)


PE(18:3(9,11,15)-OH(13)/DiMe(9,3)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(9,11,15)-OH(13)/DiMe(9,3)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 10,13-epoxy-11-methylhexadeca-10,12-dienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PC(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

trimethyl(2-{[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

trimethyl(2-{[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

trimethyl(2-{[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

trimethyl(2-{[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

(2-{[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

(2-{[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

(2-{[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

trimethyl(2-{[(2R)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

trimethyl(2-{[(2R)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

trimethyl(2-{[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

trimethyl(2-{[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

trimethyl(2-{[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

C42H74NO9P (767.5101)


PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

trimethyl(2-{[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

trimethyl(2-{[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propyl phosphono]oxy}ethyl)azanium

C42H74NO9P (767.5101)


PC(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

(2-{[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

(2-{[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

(2-{[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

(2-{[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C42H74NO9P (767.5101)


PC(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   
   

PC(14:0/11,12-EpETE)

PC(14:0/11,12-EpETE)

C42H74NO9P (767.5101)


   

PC(14:0/12-HEPE)

PC(14:0/12-HEPE)

C42H74NO9P (767.5101)


   

PC(14:0/14,15-EpETE)

PC(14:0/14,15-EpETE)

C42H74NO9P (767.5101)


   

PC(14:0/15-HEPE)

PC(14:0/15-HEPE)

C42H74NO9P (767.5101)


   

PC(14:0/5-HEPE)

PC(14:0/5-HEPE)

C42H74NO9P (767.5101)


   

PC(14:0/8,9-EpETE)

PC(14:0/8,9-EpETE)

C42H74NO9P (767.5101)


   

PC(14:0/8-HEPE)

PC(14:0/8-HEPE)

C42H74NO9P (767.5101)


   
   
   
   

PS(15:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-pentadecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(15:1(9Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z-pentadecenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(17:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-heptadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(17:2(9Z,12Z)/18:3(6Z,9Z,12Z))

1-(9Z,12Z-heptadecadienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(17:2(9Z,12Z)/18:3(9Z,12Z,15Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(18:3(6Z,9Z,12Z)/17:2(9Z,12Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(18:3(9Z,12Z,15Z)/17:2(9Z,12Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(18:4(6Z,9Z,12Z,15Z)/17:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(20:4(5Z,8Z,11Z,14Z)/15:1(9Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/15:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-pentadecanoyl-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-hexadecyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C42H74NO9P (767.5101)


   

PS(P-18:0/18:4(6Z,9Z,12Z,15Z))

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C42H74NO9P (767.5101)


   

PS(P-16:0/20:4(5Z,8Z,11Z,14Z))

1-(1Z-hexadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoserine

C42H74NO9P (767.5101)


   

PS 35:5

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C41H70NO10P (767.4737)


   

PS O-36:5

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C42H74NO9P (767.5101)


   

C-Reactive Protein (CRP) 201-206

C-Reactive Protein (CRP) 201-206

C38H57N9O8 (767.433)


   

trans-4-(Guanidinomethyl)-cyclohexane-L-YL-D-3-cyclohexylalanyl-L-azetidine-2-YL-D-tyrosinyl-L-homoargininamide

trans-4-(Guanidinomethyl)-cyclohexane-L-YL-D-3-cyclohexylalanyl-L-azetidine-2-YL-D-tyrosinyl-L-homoargininamide

C38H61N11O6 (767.4806)


   

(2S)-2-[[(2E,4E,9R)-10-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-9-hydroxydeca-2,4-dienoyl]amino]-5-(diaminomethylideneazaniumyl)pentanoate

(2S)-2-[[(2E,4E,9R)-10-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-9-hydroxydeca-2,4-dienoyl]amino]-5-(diaminomethylideneazaniumyl)pentanoate

C37H61N5O12 (767.4317)


   

(2S)-2-[[(2E,4E,9R)-10-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-9-hydroxydeca-2,4-dienoyl]amino]-5-(diaminomethylideneamino)pentanoic acid

(2S)-2-[[(2E,4E,9R)-10-[(4S,4aS,6R,8S,8aR)-4-[[(2S)-2-hydroxy-2-[(2R,5R,6R)-2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl]acetyl]amino]-8-methoxy-7,7-dimethyl-4a,6,8,8a-tetrahydro-4H-pyrano[3,2-d][1,3]dioxin-6-yl]-9-hydroxydeca-2,4-dienoyl]amino]-5-(diaminomethylideneamino)pentanoic acid

C37H61N5O12 (767.4317)


   

PE(DiMe(9,3)/DiMe(9,3))

PE(DiMe(9,3)/DiMe(9,3))

C41H70NO10P (767.4737)


   

PE(16:1(9Z)/PGJ2)

PE(16:1(9Z)/PGJ2)

C41H70NO10P (767.4737)


   

PE(PGJ2/16:1(9Z))

PE(PGJ2/16:1(9Z))

C41H70NO10P (767.4737)


   

PE(DiMe(9,3)/18:2(10E,12Z)+=O(9))

PE(DiMe(9,3)/18:2(10E,12Z)+=O(9))

C41H70NO10P (767.4737)


   

PE(18:2(10E,12Z)+=O(9)/DiMe(9,3))

PE(18:2(10E,12Z)+=O(9)/DiMe(9,3))

C41H70NO10P (767.4737)


   

PE(DiMe(9,3)/18:2(9Z,11E)+=O(13))

PE(DiMe(9,3)/18:2(9Z,11E)+=O(13))

C41H70NO10P (767.4737)


   

PE(18:2(9Z,11E)+=O(13)/DiMe(9,3))

PE(18:2(9Z,11E)+=O(13)/DiMe(9,3))

C41H70NO10P (767.4737)


   

PE(DiMe(9,3)/18:3(10,12,15)-OH(9))

PE(DiMe(9,3)/18:3(10,12,15)-OH(9))

C41H70NO10P (767.4737)


   

PE(18:3(10,12,15)-OH(9)/DiMe(9,3))

PE(18:3(10,12,15)-OH(9)/DiMe(9,3))

C41H70NO10P (767.4737)


   

PE(DiMe(9,3)/18:3(9,11,15)-OH(13))

PE(DiMe(9,3)/18:3(9,11,15)-OH(13))

C41H70NO10P (767.4737)


   

PE(18:3(9,11,15)-OH(13)/DiMe(9,3))

PE(18:3(9,11,15)-OH(13)/DiMe(9,3))

C41H70NO10P (767.4737)


   

PC(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PC(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C42H74NO9P (767.5101)


   

PC(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

PC(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

C42H74NO9P (767.5101)


   

PS(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PS(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C40H66NO11P (767.4373)


   

PS(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

PS(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

C40H66NO11P (767.4373)


   

PS(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PS(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C40H66NO11P (767.4373)


   

PS(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

PS(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

C40H66NO11P (767.4373)


   

PS(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PS(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C40H66NO11P (767.4373)


   

PS(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

PS(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

C40H66NO11P (767.4373)


   

PC(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PC(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

PC(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

C42H74NO9P (767.5101)


   

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C42H74NO9P (767.5101)


   

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

C42H74NO9P (767.5101)


   

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PC(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C42H74NO9P (767.5101)


   

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

PC(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

C42H74NO9P (767.5101)


   

PC(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PC(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C42H74NO9P (767.5101)


   

PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

PC(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

C42H74NO9P (767.5101)


   

PC(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PC(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C42H74NO9P (767.5101)


   

PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

PC(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PC(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C42H74NO9P (767.5101)


   

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

PC(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PC(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C42H74NO9P (767.5101)


   

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

PC(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

PC(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

C42H74NO9P (767.5101)


   

PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

PC(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

PC(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

C42H74NO9P (767.5101)


   

PC(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

PC(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PC(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C42H74NO9P (767.5101)


   

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

PC(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PC(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

PC(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PC(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

PC(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PC(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C42H74NO9P (767.5101)


   

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

PC(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

C42H74NO9P (767.5101)


   

PC(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PC(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C42H74NO9P (767.5101)


   

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

PC(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

C42H74NO9P (767.5101)


   

PE(14:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PE(14:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C41H70NO10P (767.4737)


   

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:0)

PE(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:0)

C41H70NO10P (767.4737)


   

PE(14:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PE(14:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C41H70NO10P (767.4737)


   

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:0)

PE(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:0)

C41H70NO10P (767.4737)


   

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C40H66NO11P (767.4373)


   

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

C40H66NO11P (767.4373)


   

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PS(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C40H66NO11P (767.4373)


   

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

PS(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

C40H66NO11P (767.4373)


   

PS(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PS(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C40H66NO11P (767.4373)


   

PS(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

PS(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

C40H66NO11P (767.4373)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H72N2O9P+ (767.4975)


   
   
   
   
   

SHexCer 12:0;2O/20:1;O

SHexCer 12:0;2O/20:1;O

C38H73NO12S (767.4853)


   

SHexCer 17:1;2O/15:0;O

SHexCer 17:1;2O/15:0;O

C38H73NO12S (767.4853)


   

SHexCer 13:0;2O/19:1;O

SHexCer 13:0;2O/19:1;O

C38H73NO12S (767.4853)


   

SHexCer 16:1;2O/16:0;O

SHexCer 16:1;2O/16:0;O

C38H73NO12S (767.4853)


   

SHexCer 19:1;2O/13:0;O

SHexCer 19:1;2O/13:0;O

C38H73NO12S (767.4853)


   

SHexCer 14:1;2O/18:0;O

SHexCer 14:1;2O/18:0;O

C38H73NO12S (767.4853)


   

SHexCer 18:1;2O/14:0;O

SHexCer 18:1;2O/14:0;O

C38H73NO12S (767.4853)


   

SHexCer 10:1;2O/22:0;O

SHexCer 10:1;2O/22:0;O

C38H73NO12S (767.4853)


   

SHexCer 11:0;2O/21:1;O

SHexCer 11:0;2O/21:1;O

C38H73NO12S (767.4853)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenoate

C45H70NO7P (767.489)


   

SHexCer 10:0;2O/22:1;O

SHexCer 10:0;2O/22:1;O

C38H73NO12S (767.4853)


   

SHexCer 18:0;2O/14:1;O

SHexCer 18:0;2O/14:1;O

C38H73NO12S (767.4853)


   

SHexCer 12:1;2O/20:0;O

SHexCer 12:1;2O/20:0;O

C38H73NO12S (767.4853)


   

SHexCer 16:0;2O/16:1;O

SHexCer 16:0;2O/16:1;O

C38H73NO12S (767.4853)


   

SHexCer 20:0;2O/12:1;O

SHexCer 20:0;2O/12:1;O

C38H73NO12S (767.4853)


   

SHexCer 13:1;2O/19:0;O

SHexCer 13:1;2O/19:0;O

C38H73NO12S (767.4853)


   

SHexCer 17:0;2O/15:1;O

SHexCer 17:0;2O/15:1;O

C38H73NO12S (767.4853)


   

SHexCer 14:0;2O/18:1;O

SHexCer 14:0;2O/18:1;O

C38H73NO12S (767.4853)


   

SHexCer 19:0;2O/13:1;O

SHexCer 19:0;2O/13:1;O

C38H73NO12S (767.4853)


   

SHexCer 20:1;2O/12:0;O

SHexCer 20:1;2O/12:0;O

C38H73NO12S (767.4853)


   

SHexCer 11:1;2O/21:0;O

SHexCer 11:1;2O/21:0;O

C38H73NO12S (767.4853)


   

SHexCer 15:1;2O/17:0;O

SHexCer 15:1;2O/17:0;O

C38H73NO12S (767.4853)


   

Lnaps 17:2/N-18:3

Lnaps 17:2/N-18:3

C41H70NO10P (767.4737)


   

Lnaps 17:1/N-18:4

Lnaps 17:1/N-18:4

C41H70NO10P (767.4737)


   

Lnaps 15:0/N-20:5

Lnaps 15:0/N-20:5

C41H70NO10P (767.4737)


   

Lnaps 18:4/N-17:1

Lnaps 18:4/N-17:1

C41H70NO10P (767.4737)


   

Lnaps 20:5/N-15:0

Lnaps 20:5/N-15:0

C41H70NO10P (767.4737)


   

Lnaps 13:0/N-22:5

Lnaps 13:0/N-22:5

C41H70NO10P (767.4737)


   

Lnaps 15:1/N-20:4

Lnaps 15:1/N-20:4

C41H70NO10P (767.4737)


   

Lnaps 19:2/N-16:3

Lnaps 19:2/N-16:3

C41H70NO10P (767.4737)


   

Lnaps 16:3/N-19:2

Lnaps 16:3/N-19:2

C41H70NO10P (767.4737)


   

Lnaps 24:5/N-11:0

Lnaps 24:5/N-11:0

C41H70NO10P (767.4737)


   

Lnaps 13:1/N-22:4

Lnaps 13:1/N-22:4

C41H70NO10P (767.4737)


   

Lnaps 20:4/N-15:1

Lnaps 20:4/N-15:1

C41H70NO10P (767.4737)


   

Lnaps 22:4/N-13:1

Lnaps 22:4/N-13:1

C41H70NO10P (767.4737)


   

Lnaps 22:5/N-13:0

Lnaps 22:5/N-13:0

C41H70NO10P (767.4737)


   

Lnaps 11:0/N-24:5

Lnaps 11:0/N-24:5

C41H70NO10P (767.4737)


   

Lnaps 18:3/N-17:2

Lnaps 18:3/N-17:2

C41H70NO10P (767.4737)


   

PI-Cer 20:1;2O/12:0;O

PI-Cer 20:1;2O/12:0;O

C38H74NO12P (767.4948)


   

PI-Cer 13:0;2O/19:1;O

PI-Cer 13:0;2O/19:1;O

C38H74NO12P (767.4948)


   

PI-Cer 19:1;2O/13:0;O

PI-Cer 19:1;2O/13:0;O

C38H74NO12P (767.4948)


   

PI-Cer 16:1;2O/16:0;O

PI-Cer 16:1;2O/16:0;O

C38H74NO12P (767.4948)


   

PI-Cer 12:1;2O/20:0;O

PI-Cer 12:1;2O/20:0;O

C38H74NO12P (767.4948)


   

PI-Cer 13:1;2O/19:0;O

PI-Cer 13:1;2O/19:0;O

C38H74NO12P (767.4948)


   

PI-Cer 18:0;2O/14:1;O

PI-Cer 18:0;2O/14:1;O

C38H74NO12P (767.4948)


   

PI-Cer 17:1;2O/15:0;O

PI-Cer 17:1;2O/15:0;O

C38H74NO12P (767.4948)


   

PI-Cer 16:0;2O/16:1;O

PI-Cer 16:0;2O/16:1;O

C38H74NO12P (767.4948)


   

PI-Cer 15:1;2O/17:0;O

PI-Cer 15:1;2O/17:0;O

C38H74NO12P (767.4948)


   

PI-Cer 12:0;2O/20:1;O

PI-Cer 12:0;2O/20:1;O

C38H74NO12P (767.4948)


   

PI-Cer 17:0;2O/15:1;O

PI-Cer 17:0;2O/15:1;O

C38H74NO12P (767.4948)


   

PI-Cer 19:0;2O/13:1;O

PI-Cer 19:0;2O/13:1;O

C38H74NO12P (767.4948)


   

PI-Cer 20:0;2O/12:1;O

PI-Cer 20:0;2O/12:1;O

C38H74NO12P (767.4948)


   

PI-Cer 14:0;2O/18:1;O

PI-Cer 14:0;2O/18:1;O

C38H74NO12P (767.4948)


   

PI-Cer 18:1;2O/14:0;O

PI-Cer 18:1;2O/14:0;O

C38H74NO12P (767.4948)


   

PI-Cer 14:1;2O/18:0;O

PI-Cer 14:1;2O/18:0;O

C38H74NO12P (767.4948)


   

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-dodecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-dodecanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-dodecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[2-octadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-octadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-icos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-hexadecoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexadecoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-decanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-decanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[2-hexadecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexadecanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-decoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decoxy-2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H74NO9P (767.5101)


   

2-[4-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C46H73NO6S (767.5158)


   
   

SHexCer 19:0;2O/14:0

SHexCer 19:0;2O/14:0

C39H77NO11S (767.5217)


   

SHexCer 17:0;2O/16:0

SHexCer 17:0;2O/16:0

C39H77NO11S (767.5217)


   

SHexCer 15:0;2O/18:0

SHexCer 15:0;2O/18:0

C39H77NO11S (767.5217)


   

SHexCer 16:0;2O/17:0

SHexCer 16:0;2O/17:0

C39H77NO11S (767.5217)


   

SHexCer 20:0;2O/13:0

SHexCer 20:0;2O/13:0

C39H77NO11S (767.5217)


   

SHexCer 21:0;2O/12:0

SHexCer 21:0;2O/12:0

C39H77NO11S (767.5217)


   

SHexCer 18:0;2O/15:0

SHexCer 18:0;2O/15:0

C39H77NO11S (767.5217)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H70NO7P (767.489)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H70NO7P (767.489)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[3-heptadecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(5Z,8Z,11Z,14Z,17Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]icosa-5,8,11,14,17-pentaenamide

(5Z,8Z,11Z,14Z,17Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]icosa-5,8,11,14,17-pentaenamide

C40H65NO13 (767.4456)


   

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

(3Z,6Z,9Z,12Z,15Z)-N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]octadeca-3,6,9,12,15-pentaenamide

C40H65NO13 (767.4456)


   

(4Z,7Z,10Z,13Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[(4E,8E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodeca-4,8-dien-2-yl]hexadeca-4,7,10,13-tetraenamide

C40H65NO13 (767.4456)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C44H66NO8P (767.4526)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

C44H66NO8P (767.4526)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C41H70NO10P (767.4737)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-16:1/20:5;O3

PE P-16:1/20:5;O3

C41H70NO10P (767.4737)


   
   

PE P-40:10 or PE O-40:11

PE P-40:10 or PE O-40:11

C45H70NO7P (767.489)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-14:0/22:4 or PS O-14:1/22:4

PS P-14:0/22:4 or PS O-14:1/22:4

C42H74NO9P (767.5101)


   
   

PS P-16:0/20:4 or PS O-16:1/20:4

PS P-16:0/20:4 or PS O-16:1/20:4

C42H74NO9P (767.5101)


   
   

PS P-16:1/20:3 or PS O-16:2/20:3

PS P-16:1/20:3 or PS O-16:2/20:3

C42H74NO9P (767.5101)


   
   

PS P-18:0/18:4 or PS O-18:1/18:4

PS P-18:0/18:4 or PS O-18:1/18:4

C42H74NO9P (767.5101)


   
   

PS P-18:1/18:3 or PS O-18:2/18:3

PS P-18:1/18:3 or PS O-18:2/18:3

C42H74NO9P (767.5101)


   
   

PS P-36:4 or PS O-36:5

PS P-36:4 or PS O-36:5

C42H74NO9P (767.5101)


   
   
   
   
   
   
   
   

Hex2Cer 14:0;O2/12:0;O

Hex2Cer 14:0;O2/12:0;O

C38H73NO14 (767.5031)


   

Hex2Cer 15:0;O2/11:0;O

Hex2Cer 15:0;O2/11:0;O

C38H73NO14 (767.5031)


   

Hex2Cer 16:0;O2/10:0;O

Hex2Cer 16:0;O2/10:0;O

C38H73NO14 (767.5031)


   

Hex2Cer 26:0;O2;O

Hex2Cer 26:0;O2;O

C38H73NO14 (767.5031)


   

Hex2Cer 26:0;O3

Hex2Cer 26:0;O3

C38H73NO14 (767.5031)


   

LacCer 14:0;O2/12:0;O

LacCer 14:0;O2/12:0;O

C38H73NO14 (767.5031)


   

LacCer 15:0;O2/11:0;O

LacCer 15:0;O2/11:0;O

C38H73NO14 (767.5031)


   

LacCer 16:0;O2/10:0;O

LacCer 16:0;O2/10:0;O

C38H73NO14 (767.5031)


   

LacCer 26:0;O2;O

LacCer 26:0;O2;O

C38H73NO14 (767.5031)


   
   
   

IPC 14:0;O2/18:1;O

IPC 14:0;O2/18:1;O

C38H74NO12P (767.4948)


   

IPC 14:1;O2/18:0;O

IPC 14:1;O2/18:0;O

C38H74NO12P (767.4948)


   
   

IPC 15:1;O2/17:0;O

IPC 15:1;O2/17:0;O

C38H74NO12P (767.4948)


   

IPC 16:1;O2/16:0;O

IPC 16:1;O2/16:0;O

C38H74NO12P (767.4948)


   

IPC 17:1;O2/15:0;O

IPC 17:1;O2/15:0;O

C38H74NO12P (767.4948)


   

IPC 18:1;O2/14:0;O

IPC 18:1;O2/14:0;O

C38H74NO12P (767.4948)


   

IPC 19:1;O2/13:0;O

IPC 19:1;O2/13:0;O

C38H74NO12P (767.4948)


   

IPC 20:1;O2/12:0;O

IPC 20:1;O2/12:0;O

C38H74NO12P (767.4948)


   

IPC 21:1;O2/11:0;O

IPC 21:1;O2/11:0;O

C38H74NO12P (767.4948)


   

IPC 22:1;O2/10:0;O

IPC 22:1;O2/10:0;O

C38H74NO12P (767.4948)


   
   
   
   

(3s,6s,9s,15s,18s,21s,24s)-3-benzyl-15,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

(3s,6s,9s,15s,18s,21s,24s)-3-benzyl-15,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C40H61N7O8 (767.4581)


   

2-({[(2s)-1-[(2s)-2-[(2s)-2-{[(2r,3r)-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

2-({[(2s)-1-[(2s)-2-[(2s)-2-{[(2r,3r)-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C41H61N5O9 (767.4469)


   

(2r)-2-({[(2s)-1-[(2s)-2-[(2r)-2-{[(2s,3s)-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

(2r)-2-({[(2s)-1-[(2s)-2-[(2r)-2-{[(2s,3s)-1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido]-4-methylpentanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-(4-hydroxyphenyl)propanoic acid

C41H61N5O9 (767.4469)


   

2-[(1-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxyoctylidene)amino]ethylidene}amino)propylidene]amino}-4-methylpentylidene)amino]-2-methylpropylidene}amino)propylidene]amino}-3-methylpentylidene)amino]-4-methylpentanoic acid

2-[(1-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxy-2-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxyoctylidene)amino]ethylidene}amino)propylidene]amino}-4-methylpentylidene)amino]-2-methylpropylidene}amino)propylidene]amino}-3-methylpentylidene)amino]-4-methylpentanoic acid

C38H69N7O9 (767.5157)


   

3-hydroxy-n-{5-hydroxy-4-[(3-hydroxy-13-methyltetradecanoyl)oxy]-6-(hydroxymethyl)-2-(phosphonooxy)oxan-3-yl}-15-methylhexadecanimidic acid

3-hydroxy-n-{5-hydroxy-4-[(3-hydroxy-13-methyltetradecanoyl)oxy]-6-(hydroxymethyl)-2-(phosphonooxy)oxan-3-yl}-15-methylhexadecanimidic acid

C38H74NO12P (767.4948)


   

(3s,6s,12s,15s,18s,21s,24s)-15-benzyl-3,18-bis[(2s)-butan-2-yl]-5,14,17,20,23-pentahydroxy-12-(hydroxymethyl)-21-(2-methylpropyl)-1,4,10,13,16,19,22-heptaazatricyclo[22.3.0.0⁶,¹⁰]heptacosa-4,13,16,19,22-pentaene-2,11-dione

(3s,6s,12s,15s,18s,21s,24s)-15-benzyl-3,18-bis[(2s)-butan-2-yl]-5,14,17,20,23-pentahydroxy-12-(hydroxymethyl)-21-(2-methylpropyl)-1,4,10,13,16,19,22-heptaazatricyclo[22.3.0.0⁶,¹⁰]heptacosa-4,13,16,19,22-pentaene-2,11-dione

C40H61N7O8 (767.4581)


   

2-[({1-[2-(2-{[1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-3-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

2-[({1-[2-(2-{[1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-3-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

C41H61N5O9 (767.4469)


   

5-carbamimidamido-2-{[(2e,4e)-10-(4-{[1,2-dihydroxy-2-(2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl)ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl)-1,9-dihydroxydeca-2,4-dien-1-ylidene]amino}pentanoic acid

5-carbamimidamido-2-{[(2e,4e)-10-(4-{[1,2-dihydroxy-2-(2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl)ethylidene]amino}-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-6-yl)-1,9-dihydroxydeca-2,4-dien-1-ylidene]amino}pentanoic acid

C37H61N5O12 (767.4317)


   

(4r)-4-{[(2s)-2-{[(2s)-2-{[(2r)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-{[(2s)-1-{[(3s)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butanoic acid

(4r)-4-{[(2s)-2-{[(2s)-2-{[(2r)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-{[(2s)-1-{[(3s)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butanoic acid

C38H57N9O8 (767.433)


   

3-hydroxy-4-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxy-3-methylbutylidene)amino]-3-methylbutylidene}amino)-3-methylbutylidene]amino}-n-{1-[(3-hydroxy-5-methoxy-5-oxo-1-phenylpentan-2-yl)-c-hydroxycarbonimidoyl]ethyl}-5-phenylpentanimidic acid

3-hydroxy-4-{[1-hydroxy-2-({1-hydroxy-2-[(1-hydroxy-3-methylbutylidene)amino]-3-methylbutylidene}amino)-3-methylbutylidene]amino}-n-{1-[(3-hydroxy-5-methoxy-5-oxo-1-phenylpentan-2-yl)-c-hydroxycarbonimidoyl]ethyl}-5-phenylpentanimidic acid

C41H61N5O9 (767.4469)


   

2-[({1-[2-(2-{[1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-4-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

2-[({1-[2-(2-{[1,2-dihydroxy-3-(methylamino)decylidene]amino}-3-(4-hydroxyphenyl)-n-methylpropanamido)-4-methylpentanoyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-3-(4-hydroxyphenyl)propanoic acid

C41H61N5O9 (767.4469)


   

(2s)-2-{[(2s,3s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxy-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({1-hydroxy-2-[(1-hydroxyoctylidene)amino]ethylidene}amino)propylidene]amino}-4-methylpentylidene]amino}-2-methylpropylidene)amino]propylidene]amino}-3-methylpentylidene]amino}-4-methylpentanoic acid

(2s)-2-{[(2s,3s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxy-2-{[(2s)-1-hydroxy-2-{[(2s)-1-hydroxy-2-({1-hydroxy-2-[(1-hydroxyoctylidene)amino]ethylidene}amino)propylidene]amino}-4-methylpentylidene]amino}-2-methylpropylidene)amino]propylidene]amino}-3-methylpentylidene]amino}-4-methylpentanoic acid

C38H69N7O9 (767.5157)


   

(4r)-4-{[(2s)-2-{[(2s)-2-{[(2r)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-{[(1r,2s)-1-{[(3s)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butanoic acid

(4r)-4-{[(2s)-2-{[(2s)-2-{[(2r)-2-amino-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-{[(1r,2s)-1-{[(3s)-2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butanoic acid

C38H57N9O8 (767.433)


   

(3r)-3-hydroxy-n-[(2r,3r,4r,5s,6r)-5-hydroxy-4-{[(3r)-3-hydroxy-13-methyltetradecanoyl]oxy}-6-(hydroxymethyl)-2-(phosphonooxy)oxan-3-yl]-15-methylhexadecanimidic acid

(3r)-3-hydroxy-n-[(2r,3r,4r,5s,6r)-5-hydroxy-4-{[(3r)-3-hydroxy-13-methyltetradecanoyl]oxy}-6-(hydroxymethyl)-2-(phosphonooxy)oxan-3-yl]-15-methylhexadecanimidic acid

C38H74NO12P (767.4948)


   

(3s,6s,9s,15s,18s,21s,24r)-3-benzyl-15,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

(3s,6s,9s,15s,18s,21s,24r)-3-benzyl-15,21-bis[(2s)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C40H61N7O8 (767.4581)


   

(3s,6s,9s,15s,18s,21s,24s)-3-benzyl-15,21-bis[(2r)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

(3s,6s,9s,15s,18s,21s,24s)-3-benzyl-15,21-bis[(2r)-butan-2-yl]-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C40H61N7O8 (767.4581)


   

3-benzyl-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-15,21-bis(sec-butyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

3-benzyl-5,8,17,20,23-pentahydroxy-18-(hydroxymethyl)-6-(2-methylpropyl)-15,21-bis(sec-butyl)-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaene-2,14-dione

C40H61N7O8 (767.4581)


   

4-{[2-({2-[(2-amino-1-hydroxy-3-phenylpropylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-({1-[(2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl)-c-hydroxycarbonimidoyl]-2-methylbutyl}-c-hydroxycarbonimidoyl)butanoic acid

4-{[2-({2-[(2-amino-1-hydroxy-3-phenylpropylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-3-(3h-imidazol-4-yl)propylidene]amino}-4-({1-[(2-hydroxy-4,5,6,7-tetrahydro-3h-azepin-3-yl)-c-hydroxycarbonimidoyl]-2-methylbutyl}-c-hydroxycarbonimidoyl)butanoic acid

C38H57N9O8 (767.433)