Exact Mass: 763.463539
Exact Mass Matches: 763.463539
Found 206 metabolites which its exact mass value is equals to given mass value 763.463539
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
14-hydroxyclarithromycin
C38H69NO14 (763.4717813999999)
14-hydroxyclarithromycin is a metabolite of clarithromycin. Clarithromycin is a macrolide antibiotic used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), skin and skin structure infections. In addition, it is sometimes used to treat Legionellosis, Helicobacter pylori, and lyme disease. (Wikipedia)
14-OH Clarithromycin
C38H69NO14 (763.4717813999999)
PE(14:0/PGF1alpha)
PE(14:0/PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/PGF1alpha), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(PGF1alpha/14:0)
PE(PGF1alpha/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF1alpha/14:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PS(14:1(9Z)/18:1(12Z)-2OH(9,10))
PS(14:1(9Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(14:1(9Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
PS(18:1(12Z)-2OH(9,10)/14:1(9Z))
PS(18:1(12Z)-2OH(9,10)/14:1(9Z)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:1(12Z)-2OH(9,10)/14:1(9Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).
Clarithromycin N-Oxide
C38H69NO14 (763.4717813999999)
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3446
21-desethyl-21-(methylthiomethyl)spinosyn A|21-desethyl-21-methylthiomethyl spinosyn A
14-Hydroxy-6-O-methylerythromycin A
C38H69NO14 (763.4717813999999)
trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide
C34H68F6NO4PS2 (763.4231329999999)
[6-azaniumyl-1-[[4-azaniumyl-6-[[4-azaniumyl-6-[[(2R,3R,4S,5R,6R)-5-carbamoyloxy-4-hydroxy-6-(hydroxymethyl)-2-[(7-hydroxy-4-oxo-1,3a,5,6,7,7a-hexahydroimidazo[4,5-c]pyridin-3-ium-2-yl)amino]oxan-3-yl]amino]-6-oxohexyl]amino]-6-oxohexyl]amino]-1-oxohexan-3-yl]azanium
4-guanidinomethyl-phenylacteyl-Arg-Tle-Arg-4-amidinobenzylamide
2-[2,3-bis[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[2-decanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[3-decoxy-2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropanoic acid
2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-amino-3-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]hexanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]decanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]nonadecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]tridecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]dodecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]octadecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]heptadecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]nonanamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradecan-2-yl]tridec-9-enamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]heptadec-9-enamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundecan-2-yl]hexadec-9-enamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentacos-4-en-2-yl]acetamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytricos-4-en-2-yl]butanamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]nonadec-9-enamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]pentadecanamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]octadec-9-enamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetracos-4-en-2-yl]propanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]heptanamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodecan-2-yl]pentadec-9-enamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]undecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]hexadecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]tetradecanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonadec-4-en-2-yl]octanamide
C39H73NO13 (763.5081647999999)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydocos-4-en-2-yl]pentanamide
C39H73NO13 (763.5081647999999)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridecan-2-yl]tetradec-9-enamide
C39H73NO13 (763.5081647999999)
(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S,3R,4S,6R)-2-[[(3S,4R,5R,6S,7S,9S,11S,12S,13R,14S)-14-ethyl-12,13-dihydroxy-4-[(2S,4S,5R,6R)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-7-methoxy-3,5,7,9,11,13-hexamethyl-2,10-dioxo-oxacyclotetradec-6-yl]oxy]-3-hydroxy-N,N,6-trimethyloxan-4-amine oxide
C38H69NO14 (763.4717813999999)
(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
streptothricin D(5+)
A primary aliphatic ammonium ion which is obtained from streptothricin D by protonation of the guanidino and amino groups.