Exact Mass: 761.4384

Exact Mass Matches: 761.4384

Found 108 metabolites which its exact mass value is equals to given mass value 761.4384, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(14:0/PGF2alpha)

(2-aminoethoxy)[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(14:0/PGF2alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/PGF2alpha), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGF2alpha/14:0)

(2-aminoethoxy)[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(PGF2alpha/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF2alpha/14:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:0/PGE1)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(14:0/PGE1) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/PGE1), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGE1/14:0)

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(PGE1/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGE1/14:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:0/PGD1)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(14:0/PGD1) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:0/PGD1), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGD1/14:0)

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-(tetradecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(PGD1/14:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGD1/14:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(14:1(9Z)/PGF1alpha)

(2-aminoethoxy)[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(14:1(9Z)/PGF1alpha) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/PGF1alpha), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGF1alpha/14:1(9Z))

(2-aminoethoxy)[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(PGF1alpha/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGF1alpha/14:1(9Z)), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(16:0/5-iso PGF2VI)

(2-aminoethoxy)[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(hexadecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(16:0/5-iso PGF2VI) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(16:0/5-iso PGF2VI), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(5-iso PGF2VI/16:0)

(2-aminoethoxy)[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(hexadecanoyloxy)propoxy]phosphinic acid

C39H72NO11P (761.4843)


PE(5-iso PGF2VI/16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(5-iso PGF2VI/16:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(15:0/18:1(12Z)-O(9S,10R))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(pentadecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C39H72NO11P (761.4843)


PS(15:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(15:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:1(12Z)-O(9S,10R)/15:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(pentadecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C39H72NO11P (761.4843)


PS(18:1(12Z)-O(9S,10R)/15:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:1(12Z)-O(9S,10R)/15:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(15:0/18:1(9Z)-O(12,13))

(2S)-2-amino-3-{[hydroxy((2R)-3-(pentadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy)phosphoryl]oxy}propanoic acid

C39H72NO11P (761.4843)


PS(15:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(15:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

PS(18:1(9Z)-O(12,13)/15:0)

(2S)-2-amino-3-({hydroxy[(2R)-2-(pentadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphoryl}oxy)propanoic acid

C39H72NO11P (761.4843)


PS(18:1(9Z)-O(12,13)/15:0) is an oxidized phosphatidylserine (PS). Oxidized phosphatidylserines are glycerophospholipids in which a phosphorylserine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylserines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PS(18:1(9Z)-O(12,13)/15:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PSs can be synthesized via three different routes. In one route, the oxidized PS is synthetized de novo following the same mechanisms as for PSs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PS backbone, mainly through the action of LOX (PMID: 33329396).

   

pullularin C

pullularin C

C41H55N5O9 (761.4)


   

2,3-Diphospho-D-glyceric acid pentacyclohexylamine salt

2,3-Diphospho-D-glyceric acid pentacyclohexylamine salt

C33H73N5O10P2 (761.4832)


   

(S)-22-(methoxycarbonyl)-3,20,25,34-tetraoxo-2,29,32,38,41-pentaoxa-21,26,35-triazatritetracontan-43-oic acid

(S)-22-(methoxycarbonyl)-3,20,25,34-tetraoxo-2,29,32,38,41-pentaoxa-21,26,35-triazatritetracontan-43-oic acid

C37H67N3O13 (761.4674)


   

PE(14:0/PGF2alpha)

PE(14:0/PGF2alpha)

C39H72NO11P (761.4843)


   

PE(PGF2alpha/14:0)

PE(PGF2alpha/14:0)

C39H72NO11P (761.4843)


   

PE(14:1(9Z)/PGF1alpha)

PE(14:1(9Z)/PGF1alpha)

C39H72NO11P (761.4843)


   

PE(PGF1alpha/14:1(9Z))

PE(PGF1alpha/14:1(9Z))

C39H72NO11P (761.4843)


   
   
   
   
   

PE(16:0/5-iso PGF2VI)

PE(16:0/5-iso PGF2VI)

C39H72NO11P (761.4843)


   

PE(5-iso PGF2VI/16:0)

PE(5-iso PGF2VI/16:0)

C39H72NO11P (761.4843)


   

PS(15:0/18:1(12Z)-O(9S,10R))

PS(15:0/18:1(12Z)-O(9S,10R))

C39H72NO11P (761.4843)


   

PS(18:1(12Z)-O(9S,10R)/15:0)

PS(18:1(12Z)-O(9S,10R)/15:0)

C39H72NO11P (761.4843)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-pentadecanoyloxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-pentadecanoyloxy-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H72NO11P (761.4843)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-pentadecanoyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-pentadecanoyloxy-3-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H72NO11P (761.4843)


   
   

SHexCer 14:2;2O/18:2;O

SHexCer 14:2;2O/18:2;O

C38H67NO12S (761.4384)


   

SHexCer 18:3;2O/14:1;O

SHexCer 18:3;2O/14:1;O

C38H67NO12S (761.4384)


   

SHexCer 14:3;2O/18:1;O

SHexCer 14:3;2O/18:1;O

C38H67NO12S (761.4384)


   

SHexCer 16:2;2O/16:2;O

SHexCer 16:2;2O/16:2;O

C38H67NO12S (761.4384)


   

SHexCer 20:3;2O/12:1;O

SHexCer 20:3;2O/12:1;O

C38H67NO12S (761.4384)


   

SHexCer 19:3;2O/13:1;O

SHexCer 19:3;2O/13:1;O

C38H67NO12S (761.4384)


   

SHexCer 17:3;2O/15:1;O

SHexCer 17:3;2O/15:1;O

C38H67NO12S (761.4384)


   

SHexCer 16:3;2O/16:1;O

SHexCer 16:3;2O/16:1;O

C38H67NO12S (761.4384)


   

PI-Cer 16:3;2O/16:1;O

PI-Cer 16:3;2O/16:1;O

C38H68NO12P (761.4479)


   

PI-Cer 19:3;2O/13:1;O

PI-Cer 19:3;2O/13:1;O

C38H68NO12P (761.4479)


   

PI-Cer 14:3;2O/18:1;O

PI-Cer 14:3;2O/18:1;O

C38H68NO12P (761.4479)


   

PI-Cer 16:2;2O/16:2;O

PI-Cer 16:2;2O/16:2;O

C38H68NO12P (761.4479)


   

PI-Cer 20:3;2O/12:1;O

PI-Cer 20:3;2O/12:1;O

C38H68NO12P (761.4479)


   

PI-Cer 18:3;2O/14:1;O

PI-Cer 18:3;2O/14:1;O

C38H68NO12P (761.4479)


   

PI-Cer 14:2;2O/18:2;O

PI-Cer 14:2;2O/18:2;O

C38H68NO12P (761.4479)


   

PI-Cer 17:3;2O/15:1;O

PI-Cer 17:3;2O/15:1;O

C38H68NO12P (761.4479)


   

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]phosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C42H68NO9P (761.4631)


   
   
   

SHexCer 17:1;2O/16:2

SHexCer 17:1;2O/16:2

C39H71NO11S (761.4748)


   

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H64NO10P (761.4268)


   

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H64NO10P (761.4268)


   

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C41H64NO10P (761.4268)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS O-20:0/13:3;O2

PS O-20:0/13:3;O2

C39H72NO11P (761.4843)


   
   
   

PS P-20:0/12:3;O3

PS P-20:0/12:3;O3

C38H68NO12P (761.4479)


   

PS P-20:1/12:2;O3

PS P-20:1/12:2;O3

C38H68NO12P (761.4479)


   
   
   
   
   
   
   
   
   
   
   

Hex2Cer 26:3;O3

Hex2Cer 26:3;O3

C38H67NO14 (761.4561)


   
   
   
   
   
   
   
   
   
   
   
   

TFLLR-NH2(TFA)

TFLLR-NH2(TFA)

C33H54F3N9O8 (761.4047)


TFLLR-NH2 (TFA) is a selective PAR1 agonist with an EC50 of 1.9 μM.

   

(3s,6s,12s,15s,18s,23as)-6,12-bis[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-(3h-imidazol-4-ylmethyl)-3-(2-methylpropyl)-15-[2-(methylsulfanyl)ethyl]-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

(3s,6s,12s,15s,18s,23as)-6,12-bis[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-(3h-imidazol-4-ylmethyl)-3-(2-methylpropyl)-15-[2-(methylsulfanyl)ethyl]-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C36H59N9O7S (761.4258)


   

15-benzyl-1,7-dihydroxy-3-(hydroxymethyl)-6-isopropyl-5,11,12-trimethyl-9-({4-[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-d]1-oxa-4,7,10,13,16-pentaazacyclooctadecane-4,10,13,16-tetrone

15-benzyl-1,7-dihydroxy-3-(hydroxymethyl)-6-isopropyl-5,11,12-trimethyl-9-({4-[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-d]1-oxa-4,7,10,13,16-pentaazacyclooctadecane-4,10,13,16-tetrone

C41H55N5O9 (761.4)


   

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24s,27r)-17-ethyl-1,14-dihydroxy-12-[(1e)-1-[(1r,3r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23-methoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

(1r,9s,12s,13r,14s,17r,18z,21s,23s,24s,27r)-17-ethyl-1,14-dihydroxy-12-[(1e)-1-[(1r,3r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-23-methoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C42H67NO11 (761.4714)


   

(1r,8s,11s,12r,13s,16r,17z,20s,22s,23s,26r)-16-ethyl-1,13-dihydroxy-11-[(1e)-1-[(1r,3r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-22-methoxy-12,18,20,26-tetramethyl-10,28-dioxa-3-azatricyclo[21.4.1.0³,⁸]octacos-17-ene-2,9,15,27-tetrone

(1r,8s,11s,12r,13s,16r,17z,20s,22s,23s,26r)-16-ethyl-1,13-dihydroxy-11-[(1e)-1-[(1r,3r,4r)-4-hydroxy-3-methoxycyclohexyl]prop-1-en-2-yl]-22-methoxy-12,18,20,26-tetramethyl-10,28-dioxa-3-azatricyclo[21.4.1.0³,⁸]octacos-17-ene-2,9,15,27-tetrone

C42H67NO11 (761.4714)


   

(3s,6s,9s,12s,15r,20as)-15-benzyl-1,7-dihydroxy-3-(hydroxymethyl)-6-isopropyl-5,11,12-trimethyl-9-({4-[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-d]1-oxa-4,7,10,13,16-pentaazacyclooctadecane-4,10,13,16-tetrone

(3s,6s,9s,12s,15r,20as)-15-benzyl-1,7-dihydroxy-3-(hydroxymethyl)-6-isopropyl-5,11,12-trimethyl-9-({4-[(3-methylbut-2-en-1-yl)oxy]phenyl}methyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-d]1-oxa-4,7,10,13,16-pentaazacyclooctadecane-4,10,13,16-tetrone

C41H55N5O9 (761.4)