Exact Mass: 753.5546

Exact Mass Matches: 753.5546

Found 500 metabolites which its exact mass value is equals to given mass value 753.5546, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(14:0/20:4(8Z,11Z,14Z,17Z))

(2-{[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(14:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:0/20:4)

(2-{[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(14:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:1(9Z)/20:3(5Z,8Z,11Z))

(2-{[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(14:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of mead acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of mead acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:1(9Z)/20:3(8Z,11Z,14Z))

(2-{[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(14:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/18:4(6Z,9Z,12Z,15Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(16:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:1(9Z)/18:3(6Z,9Z,12Z))

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(16:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(16:1(9Z)/18:3(9Z,12Z,15Z))

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(16:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(6Z,9Z,12Z)/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(18:3(6Z,9Z,12Z)/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/16:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:3(9Z,12Z,15Z)/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(18:3(9Z,12Z,15Z)/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/16:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:4(6Z,9Z,12Z,15Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(18:4(6Z,9Z,12Z,15Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/16:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:4(6Z,9Z,12Z,15Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/16:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(5Z,8Z,11Z)/14:1(9Z))

(2-{[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(20:3(5Z,8Z,11Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/14:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:3(5Z,8Z,11Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/14:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(8Z,11Z,14Z)/14:1(9Z))

(2-{[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(20:3(8Z,11Z,14Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/14:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:4(5Z,8Z,11Z,14Z)/14:0)

(2-{[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(20:4(5Z,8Z,11Z,14Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/14:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:4(5Z,8Z,11Z,14Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(5Z,8Z,11Z,14Z)/14:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:4(8Z,11Z,14Z,17Z)/14:0)

(2-{[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


PC(20:4(8Z,11Z,14Z,17Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:4(8Z,11Z,14Z,17Z)/14:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(15:0/22:4(7Z,10Z,13Z,16Z))

(2-aminoethoxy)[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C42H76NO8P (753.5308)


PE(15:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:2(11Z,14Z)/P-18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(20:2(11Z,14Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-18:1(11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:2(11Z,14Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-18:1(11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:2(11Z,14Z)/P-18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(20:2(11Z,14Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-18:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(20:3(5Z,8Z,11Z)/P-18:0)

(2-aminoethoxy)[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(20:3(5Z,8Z,11Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/P-18:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:3(5Z,8Z,11Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/P-18:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:3(8Z,11Z,14Z)/P-18:0)

(2-aminoethoxy)[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(20:3(8Z,11Z,14Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/P-18:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(22:4(7Z,10Z,13Z,16Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C42H76NO8P (753.5308)


PE(22:4(7Z,10Z,13Z,16Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:4(7Z,10Z,13Z,16Z)/15:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:4(7Z,10Z,13Z,16Z)/15:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(22:4(7Z,10Z,13Z,16Z)/15:0), in particular, consists of one 7Z,10Z,13Z,16Z-docosatetraenoyl chain to the C-1 atom, and one pentadecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(P-18:0/20:3(5Z,8Z,11Z))

(2-aminoethoxy)[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(P-18:0/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of mead acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of mead acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:0/20:3(8Z,11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(P-18:0/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(11Z)/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(P-18:1(11Z)/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:1(9Z)/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


PE(P-18:1(9Z)/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/22:4(7Z,10Z,13Z,16Z))

{2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(14:0/22:4(7Z,10Z,13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/20:4(5Z,8Z,11Z,14Z))

[3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(16:0/20:4(5Z,8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/20:3(5Z,8Z,11Z))

{3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(16:1(9Z)/20:3(5Z,8Z,11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/20:3(8Z,11Z,14Z))

{3-[(9Z)-hexadec-9-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(16:1(9Z)/20:3(8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/18:4(6Z,9Z,12Z,15Z))

[2-(methylamino)ethoxy]({2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:0/18:4(6Z,9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/18:3(6Z,9Z,12Z))

[2-(methylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:1(11Z)/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/18:3(9Z,12Z,15Z))

[2-(methylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:1(11Z)/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/18:3(6Z,9Z,12Z))

[2-(methylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:1(9Z)/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/18:3(9Z,12Z,15Z))

[2-(methylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:1(9Z)/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/18:2(9Z,12Z))

{2,3-bis[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:2(9Z,12Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/18:1(11Z))

[2-(methylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:3(6Z,9Z,12Z)/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/18:1(9Z))

[2-(methylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:3(6Z,9Z,12Z)/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/18:1(11Z))

[2-(methylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:3(9Z,12Z,15Z)/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/18:1(9Z))

[2-(methylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:3(9Z,12Z,15Z)/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:0)

[2-(methylamino)ethoxy]({3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(octadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:4(6Z,9Z,12Z,15Z)/18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(5Z,8Z,11Z)/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(20:3(5Z,8Z,11Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(5Z,8Z,11Z)/16:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(8Z,11Z,14Z)/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(20:3(8Z,11Z,14Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(8Z,11Z,14Z)/16:1(9Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(5Z,8Z,11Z,14Z)/16:0)

[2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(20:4(5Z,8Z,11Z,14Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:4(8Z,11Z,14Z,17Z)/16:0)

[2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(20:4(8Z,11Z,14Z,17Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:4(7Z,10Z,13Z,16Z)/14:0)

{3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(22:4(7Z,10Z,13Z,16Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:4(7Z,10Z,13Z,16Z)/14:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/20:4(5Z,8Z,11Z,14Z))

[2-(dimethylamino)ethoxy]({2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe2(15:0/20:4(5Z,8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/20:4(8Z,11Z,14Z,17Z))

[2-(dimethylamino)ethoxy]({2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe2(15:0/20:4(8Z,11Z,14Z,17Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:4(5Z,8Z,11Z,14Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe2(20:4(5Z,8Z,11Z,14Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(5Z,8Z,11Z,14Z)/15:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:4(8Z,11Z,14Z,17Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C42H76NO8P (753.5308)


PE-NMe2(20:4(8Z,11Z,14Z,17Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:4(8Z,11Z,14Z,17Z)/15:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/20:4(8Z,11Z,14Z,17Z))

[3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H76NO8P (753.5308)


PE-NMe(16:0/20:4(8Z,11Z,14Z,17Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 8Z,11Z,14Z,17Z-eicosapentaenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

Cadinene-gamma

(2-{[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(dodecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C42H76NO8P (753.5308)


   

Phosphatidylcholine 14:0-20:4

Phosphatidylcholine 14:0-20:4

C42H76NO8P (753.5308)


   

Phosphatidylcholine 16:1-18:3

Phosphatidylcholine 16:1-18:3

C42H76NO8P (753.5308)


   

Phosphatidylethanolamine 17:0-20:4

Phosphatidylethanolamine 17:0-20:4

C42H76NO8P (753.5308)


   

Phosphatidylethanolamine alkyl 18:0-20:4

Phosphatidylethanolamine alkyl 18:0-20:4

C43H80NO7P (753.5672)


   

Phosphatidylethanolamine alkenyl 18:0-20:3

Phosphatidylethanolamine alkenyl 18:0-20:3

C43H80NO7P (753.5672)


   

Phosphatidylethanolamine alkyl 16:0-22:4

Phosphatidylethanolamine alkyl 16:0-22:4

C43H80NO7P (753.5672)


   

PE(17:1e/18-HETE)

PE(17:1e/18-HETE)

C42H76NO8P (753.5308)


   

PE(17:1e/20-HETE)

PE(17:1e/20-HETE)

C42H76NO8P (753.5308)


   

PE 37:4

1-heptadecanoyl, 2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


Found in mouse kidney; TwoDicalId=330; MgfFile=160827_Kidney_normal_Neg_01_sute; MgfId=1352

   

(2RS,3SR,4E,8E)-1-O-(beta-D-glucopyranosyl)-3-hydroxy-2-{[(2SR,3E)-2-hydroxy-3-octadecenoyl]amino}-9-methyloctadeca-4,8-diene

(2RS,3SR,4E,8E)-1-O-(beta-D-glucopyranosyl)-3-hydroxy-2-{[(2SR,3E)-2-hydroxy-3-octadecenoyl]amino}-9-methyloctadeca-4,8-diene

C43H79NO9 (753.5755)


   

(3E,4E)-1-(beta-D-glucopyranosyloxy)-3-hydroxy-2-[(2-hydroxyoctadecanyloxy)amino]-10-methyl-3,4,9-octadecatriene

(3E,4E)-1-(beta-D-glucopyranosyloxy)-3-hydroxy-2-[(2-hydroxyoctadecanyloxy)amino]-10-methyl-3,4,9-octadecatriene

C43H79NO9 (753.5755)


   

norbatzelladine A

norbatzelladine A

C41H71N9O4 (753.5629)


   

asperamide B

asperamide B

C43H79NO9 (753.5755)


A glucosylceramide found in Penicillium commune.

   

Cerebroside C

N-(2-hydroxy-3E-octadecenoyl)-1-beta-glucosyl-9-methyl-sphinga-4E,8E-dienine

C43H79NO9 (753.5755)


   
   

PC 34:4

1-(9Z,11E,13E,15Z-octadecatetraenoyl)-2-hexadecanoyl-sn-glycero-3-phosphocholine

C42H76NO8P (753.5308)


Found in mouse muscle; TwoDicalId=139; MgfFile=160824_Muscle_AA_Neg_18; MgfId=646

   

(2-aminoethoxy)[2-[icosa-5.8.11-trienoyloxy]-3-[octadec-1-en-1-yloxy]propoxy]phosphinic acid

(2-aminoethoxy)[2-[icosa-5.8.11-trienoyloxy]-3-[octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H80NO7P (753.5672)


   

PE(17:0/20:4)

1-heptadecanoyl, 2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PC(14:0/20:4)[U]

1-tetradecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine

C42H76NO8P (753.5308)


   

PC(16:0/18:4)

3,5,8-Trioxa-4-phosphahexacosa-17,19,21,23-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, [R-(Z,Z,E,E)]-

C42H76NO8P (753.5308)


   

PC(16:0/18:4)[U]

3,5,8-Trioxa-4-phosphahexacosa-17,19,21,23-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (Z,Z,E,E)-

C42H76NO8P (753.5308)


   

PC(16:2/18:2)

3,5,8-Trioxa-4-phosphahexacosa-10,12-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxo-2,4-hexadecadienyl)oxy]methyl]-, inner salt, 4-oxide, [R-(all-E)]-

C42H76NO8P (753.5308)


   

PC(17:2/17:2)

3,5,9-Trioxa-4-phosphahexacosa-18,21-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-9,12-heptadecadienyl)oxy]-, inner salt, 4-oxide, [R-(all-Z)]-

C42H76NO8P (753.5308)


   

PC(18:2/16:2)[U]

3,5,9-Trioxa-4-phosphaheptacosa-18,21-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxo-5,8-hexadecadienyl)oxy]-, inner salt, 4-oxide, (all-Z)-

C42H76NO8P (753.5308)


   

PC(18:4/16:0)

3,5,9-Trioxa-4-phosphaheptacosa-18,20,22,24-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-, inner salt, 4-oxide, [R-(Z,Z,E,E)]-

C42H76NO8P (753.5308)


   

PC(O-15:0/20:4)

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[(pentadecyloxy)methyl]-, inner salt, 4-oxide, [R-(all-Z)]-

C43H80NO7P (753.5672)


   

PC(O-15:0/20:4)[U]

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[(pentadecyloxy)methyl]-, inner salt, 4-oxide, (all-Z)-

C43H80NO7P (753.5672)


   

PE-NMe(18:2/18:2)[U]

9,12-Octadecadienoic acid (Z,Z)-, 1-(3-hydroxy-2,4-dioxa-7-aza-3-phosphaoct-1-yl)-1,2-ethanediyl ester, P-oxide

C42H76NO8P (753.5308)


   

Lecithin

1-homo-gamma-linolenoyl-2-myristoleoyl-sn-glycero-3-phosphocholine

C42H76NO8P (753.5308)


   

PE(37:4)

1-Adrenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(38:3)

1-(1-Enyl-stearoyl)-2-homo-gamma-linolenoyl-sn-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PC(12:0/22:4(7Z,10Z,13Z,16Z))

1-dodecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphocholine

C42H76NO8P (753.5308)


   

PC(22:4(7Z,10Z,13Z,16Z)/12:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-dodecanoyl-glycero-3-phosphocholine

C42H76NO8P (753.5308)


   

PE(17:1(9Z)/20:3(8Z,11Z,14Z))

1-(9Z-heptadecenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(17:2(9Z,12Z)/20:2(11Z,14Z))

1-(9Z,12Z-heptadecadienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(18:3(6Z,9Z,12Z)/19:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(18:3(9Z,12Z,15Z)/19:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(18:4(6Z,9Z,12Z,15Z)/19:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(19:0/18:4(6Z,9Z,12Z,15Z))

1-nonadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(19:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-nonadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(19:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-nonadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(20:2(11Z,14Z)/17:2(9Z,12Z))

1-(11Z,14Z-eicosadienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(20:3(8Z,11Z,14Z)/17:1(9Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(20:4(5Z,8Z,11Z,14Z)/17:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

PE(O-16:0/22:4(7Z,10Z,13Z,16Z))

1-hexadecyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PE(O-20:0/18:4(6Z,9Z,12Z,15Z))

1-eicosyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PE(O-18:0/20:4(5Z,8Z,11Z,14Z))

1-octadecyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PE(P-20:0/18:3(6Z,9Z,12Z))

1-(1Z-eicosenyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PE(P-20:0/18:3(9Z,12Z,15Z))

1-(1Z-eicosenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

PC O-35:4

1-pentadecyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine

C43H80NO7P (753.5672)


   

PE O-38:4

1-(1Z-eicosenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


   

Chrysogeside D

N-(2R-hydroxy-3E-nonadecenoyl)-1-beta-D-glucopyranosyl-9-methyl-heptadecasphing-4E,8E-dienine

C43H79NO9 (753.5755)


A glucosylceramide isolated from Penicillium chrysogenum.

   

Flavicerebroside B

N-(2R-hydroxy-3E-octadecenoyl)-1-beta-D-galactosyl-9-methyl-sphing-4E,8E-dienine

C43H79NO9 (753.5755)


   

Flavuside B

N-(2R-hydroxy-3E-octadecenoyl)-1-beta-glucosyl-10-methyl-sphinga-4E,9E-dienine

C43H79NO9 (753.5755)


   

HexCer 37:3;O3

N-(2S-hydroxy-3E-octadecenoyl)-1-beta-galactosyl-4E,8E-9-methyl-octadecasphingadienine

C43H79NO9 (753.5755)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H76NO8P (753.5308)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoylamino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoylamino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

2-azaniumylethyl (2R)-3-(heptadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxy}propyl phosphate

2-azaniumylethyl (2R)-3-(heptadecanoyloxy)-2-{[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxy}propyl phosphate

C42H76NO8P (753.5308)


   

PE(20:2(11Z,14Z)/P-18:1(11Z))

PE(20:2(11Z,14Z)/P-18:1(11Z))

C43H80NO7P (753.5672)


   

1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-N-methylethanolamine

1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho-N-methylethanolamine

C42H76NO8P (753.5308)


   

1-O-(alpha-D-galactopyranosyl)-N-[11-(4-methoxyphenyl)undecanoyl]phytosphingosine

1-O-(alpha-D-galactopyranosyl)-N-[11-(4-methoxyphenyl)undecanoyl]phytosphingosine

C42H75NO10 (753.5391)


A glycophytoceramide having an alpha-D-galactopyranosyl residue at the O-1 position and an 11-(4-methoxyphenyl)undecanoyl group attached to the nitrogen.

   

[(2R)-3-[hydroxy-[2-(methylamino)ethoxy]phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[(2R)-3-[hydroxy-[2-(methylamino)ethoxy]phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H80NO7P (753.5672)


   
   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (26Z,29Z,32Z,35Z)-octatriaconta-26,29,32,35-tetraenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (26Z,29Z,32Z,35Z)-octatriaconta-26,29,32,35-tetraenoate

C43H80NO7P (753.5672)


   

HexCer 21:3;2O/16:0;O

HexCer 21:3;2O/16:0;O

C43H79NO9 (753.5755)


   

HexCer 18:2;2O/19:1;O

HexCer 18:2;2O/19:1;O

C43H79NO9 (753.5755)


   

HexCer 18:3;2O/19:0;O

HexCer 18:3;2O/19:0;O

C43H79NO9 (753.5755)


   

HexCer 22:2;2O/15:1;O

HexCer 22:2;2O/15:1;O

C43H79NO9 (753.5755)


   

HexCer 20:2;2O/17:1;O

HexCer 20:2;2O/17:1;O

C43H79NO9 (753.5755)


   

HexCer 21:2;2O/16:1;O

HexCer 21:2;2O/16:1;O

C43H79NO9 (753.5755)


   

HexCer 21:1;2O/16:2;O

HexCer 21:1;2O/16:2;O

C43H79NO9 (753.5755)


   

HexCer 17:3;2O/20:0;O

HexCer 17:3;2O/20:0;O

C43H79NO9 (753.5755)


   

HexCer 19:1;2O/18:2;O

HexCer 19:1;2O/18:2;O

C43H79NO9 (753.5755)


   

HexCer 17:1;2O/20:2;O

HexCer 17:1;2O/20:2;O

C43H79NO9 (753.5755)


   

HexCer 16:3;2O/21:0;O

HexCer 16:3;2O/21:0;O

C43H79NO9 (753.5755)


   

HexCer 20:3;2O/17:0;O

HexCer 20:3;2O/17:0;O

C43H79NO9 (753.5755)


   

HexCer 19:2;2O/18:1;O

HexCer 19:2;2O/18:1;O

C43H79NO9 (753.5755)


   

HexCer 19:3;2O/18:0;O

HexCer 19:3;2O/18:0;O

C43H79NO9 (753.5755)


   

HexCer 16:2;2O/21:1;O

HexCer 16:2;2O/21:1;O

C43H79NO9 (753.5755)


   

HexCer 22:3;2O/15:0;O

HexCer 22:3;2O/15:0;O

C43H79NO9 (753.5755)


   

HexCer 17:2;2O/20:1;O

HexCer 17:2;2O/20:1;O

C43H79NO9 (753.5755)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

Lnape 19:2/N-18:2

Lnape 19:2/N-18:2

C42H76NO8P (753.5308)


   

Lnape 18:3/N-19:1

Lnape 18:3/N-19:1

C42H76NO8P (753.5308)


   

Lnape 18:4/N-19:0

Lnape 18:4/N-19:0

C42H76NO8P (753.5308)


   

Lnape 13:0/N-24:4

Lnape 13:0/N-24:4

C42H76NO8P (753.5308)


   

Lnape 13:1/N-24:3

Lnape 13:1/N-24:3

C42H76NO8P (753.5308)


   

Lnape 22:4/N-15:0

Lnape 22:4/N-15:0

C42H76NO8P (753.5308)


   

Lnape 17:2/N-20:2

Lnape 17:2/N-20:2

C42H76NO8P (753.5308)


   

Lnape 22:3/N-15:1

Lnape 22:3/N-15:1

C42H76NO8P (753.5308)


   

Lnape 15:0/N-22:4

Lnape 15:0/N-22:4

C42H76NO8P (753.5308)


   

Lnape 18:2/N-19:2

Lnape 18:2/N-19:2

C42H76NO8P (753.5308)


   

Lnape 17:1/N-20:3

Lnape 17:1/N-20:3

C42H76NO8P (753.5308)


   

Lnape 11:0/N-26:4

Lnape 11:0/N-26:4

C42H76NO8P (753.5308)


   

Lnape 17:0/N-20:4

Lnape 17:0/N-20:4

C42H76NO8P (753.5308)


   

Lnape 26:4/N-11:0

Lnape 26:4/N-11:0

C42H76NO8P (753.5308)


   

Lnape 24:3/N-13:1

Lnape 24:3/N-13:1

C42H76NO8P (753.5308)


   

Lnape 20:4/N-17:0

Lnape 20:4/N-17:0

C42H76NO8P (753.5308)


   

Lnape 21:1/N-16:3

Lnape 21:1/N-16:3

C42H76NO8P (753.5308)


   

Lnape 15:1/N-22:3

Lnape 15:1/N-22:3

C42H76NO8P (753.5308)


   

Lnape 16:2/N-21:2

Lnape 16:2/N-21:2

C42H76NO8P (753.5308)


   

Lnape 19:1/N-18:3

Lnape 19:1/N-18:3

C42H76NO8P (753.5308)


   

Lnape 20:2/N-17:2

Lnape 20:2/N-17:2

C42H76NO8P (753.5308)


   

Lnape 21:2/N-16:2

Lnape 21:2/N-16:2

C42H76NO8P (753.5308)


   

Lnape 24:4/N-13:0

Lnape 24:4/N-13:0

C42H76NO8P (753.5308)


   

Lnape 19:0/N-18:4

Lnape 19:0/N-18:4

C42H76NO8P (753.5308)


   

Lnape 20:3/N-17:1

Lnape 20:3/N-17:1

C42H76NO8P (753.5308)


   

Lnape 16:3/N-21:1

Lnape 16:3/N-21:1

C42H76NO8P (753.5308)


   

HexCer 24:3;3O/12:1;(2OH)

HexCer 24:3;3O/12:1;(2OH)

C42H75NO10 (753.5391)


   

HexCer 20:3;3O/16:1;(2OH)

HexCer 20:3;3O/16:1;(2OH)

C42H75NO10 (753.5391)


   

HexCer 23:3;3O/13:1;(2OH)

HexCer 23:3;3O/13:1;(2OH)

C42H75NO10 (753.5391)


   

HexCer 22:3;3O/14:1;(2OH)

HexCer 22:3;3O/14:1;(2OH)

C42H75NO10 (753.5391)


   

HexCer 21:3;3O/15:1;(2OH)

HexCer 21:3;3O/15:1;(2OH)

C42H75NO10 (753.5391)


   

HexCer 18:3;3O/18:1;(2OH)

HexCer 18:3;3O/18:1;(2OH)

C42H75NO10 (753.5391)


   

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-heptanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] decanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] decanoate

C43H80NO7P (753.5672)


   

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

C46H75NO5S (753.5366)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] docosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] docosanoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] tetradecanoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-docos-13-enoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] dodecanoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C43H80NO7P (753.5672)


   

(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

C46H75NO5S (753.5366)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C43H80NO7P (753.5672)


   

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

C46H75NO5S (753.5366)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C43H80NO7P (753.5672)


   

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

C46H75NO5S (753.5366)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C43H80NO7P (753.5672)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-heptadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C42H76NO8P (753.5308)


   

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

HexCer 20:2;3O/16:2;(2OH)

HexCer 20:2;3O/16:2;(2OH)

C42H75NO10 (753.5391)


   

HexCer 16:2;3O/20:2;(2OH)

HexCer 16:2;3O/20:2;(2OH)

C42H75NO10 (753.5391)


   

HexCer 14:2;3O/22:2;(2OH)

HexCer 14:2;3O/22:2;(2OH)

C42H75NO10 (753.5391)


   

HexCer 18:2;3O/18:2;(2OH)

HexCer 18:2;3O/18:2;(2OH)

C42H75NO10 (753.5391)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-icos-11-enoate

C43H80NO7P (753.5672)


   

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] octadecanoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-octadec-9-enoate

C43H80NO7P (753.5672)


   

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C43H80NO7P (753.5672)


   

[2-heptadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] hexadecanoate

C43H80NO7P (753.5672)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] icosanoate

C43H80NO7P (753.5672)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C43H80NO7P (753.5672)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C42H76NO8P (753.5308)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] henicosanoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H76NO8P (753.5308)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (Z)-nonadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (Z)-nonadec-9-enoate

C42H76NO8P (753.5308)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (Z)-henicos-11-enoate

C42H76NO8P (753.5308)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] nonadecanoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H76NO8P (753.5308)


   

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-icosa-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-icosa-4,7,10,13-tetraenoate

C43H80NO7P (753.5672)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-docosa-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (4Z,7Z,10Z,13Z)-docosa-4,7,10,13-tetraenoate

C43H80NO7P (753.5672)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

2,3-bis[[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

2,3-bis[[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy]propyl 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[3-decanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[3-hexadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] nonadecanoate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C43H80NO7P (753.5672)


   

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C43H80NO7P (753.5672)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H76NO8P (753.5308)


   

[(2R)-2,3-bis[[(9E,12E)-heptadeca-9,12-dienoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2,3-bis[[(9E,12E)-heptadeca-9,12-dienoyl]oxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H76NO8P (753.5308)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H76NO8P (753.5308)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C42H76NO8P (753.5308)


   

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H76NO8P (753.5308)


   

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(E)-dec-4-enoyl]oxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dec-4-enoyl]oxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-hexadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C42H76NO8P (753.5308)


   

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (E)-henicos-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (E)-henicos-9-enoate

C42H76NO8P (753.5308)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C42H76NO8P (753.5308)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H76NO8P (753.5308)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H76NO8P (753.5308)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H76NO8P (753.5308)


   

4-[2-[(E)-dec-4-enoyl]oxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dec-4-enoyl]oxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-decanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-decanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H76NO8P (753.5308)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C42H76NO8P (753.5308)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-2-decanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] nonadecanoate

C42H76NO8P (753.5308)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C43H80NO7P (753.5672)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C42H76NO8P (753.5308)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C42H76NO8P (753.5308)


   

4-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-3-hexadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (9E,11E)-henicosa-9,11-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (9E,11E)-henicosa-9,11-dienoate

C42H76NO8P (753.5308)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] nonadecanoate

C42H76NO8P (753.5308)


   

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C43H80NO7P (753.5672)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] henicosanoate

C42H76NO8P (753.5308)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] nonadecanoate

C42H76NO8P (753.5308)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2R)-2-hexadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H76NO8P (753.5308)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H75NO7 (753.5543)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H76NO8P (753.5308)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H78N2O7P+ (753.5546)


   

PC(16:1(9Z)/18:3(9Z,12Z,15Z))

PC(16:1(9Z)/18:3(9Z,12Z,15Z))

C42H76NO8P (753.5308)


   

1-tetradecanoyl-2-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

1-tetradecanoyl-2-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

C42H76NO8P (753.5308)


A phosphatidylcholine 34:4 in which teh acyl groups specified at positions 1 and 2 are tetradecanoyl and (5Z,8Z,11Z,14Z)-eicosatetraenoyl respectively.

   

PC(20:4(5Z,8Z,11Z,14Z)/14:0)

PC(20:4(5Z,8Z,11Z,14Z)/14:0)

C42H76NO8P (753.5308)


   

1-hexadecanoyl-2-[(6Z,9Z,12Z,15Z)-octadecatetraenoyl]-sn-glycero-3-phosphocholine

1-hexadecanoyl-2-[(6Z,9Z,12Z,15Z)-octadecatetraenoyl]-sn-glycero-3-phosphocholine

C42H76NO8P (753.5308)


A phosphatidylcholine 34:4 in which the acyl groups specified at positions 1 and 2 are hexadecanoyl and (6Z,9Z,12Z,15Z)-octadecatetraenoyl respectively.

   

PC(16:1(9Z)/18:3(6Z,9Z,12Z))

PC(16:1(9Z)/18:3(6Z,9Z,12Z))

C42H76NO8P (753.5308)


   

PC(18:3(6Z,9Z,12Z)/16:1(9Z))

PC(18:3(6Z,9Z,12Z)/16:1(9Z))

C42H76NO8P (753.5308)


   

PC(18:4(6Z,9Z,12Z,15Z)/16:0)

PC(18:4(6Z,9Z,12Z,15Z)/16:0)

C42H76NO8P (753.5308)


   

PC(14:1(9Z)/20:3(5Z,8Z,11Z))

PC(14:1(9Z)/20:3(5Z,8Z,11Z))

C42H76NO8P (753.5308)


   

PC(20:3(5Z,8Z,11Z)/14:1(9Z))

PC(20:3(5Z,8Z,11Z)/14:1(9Z))

C42H76NO8P (753.5308)


   

PC(14:1(9Z)/20:3(8Z,11Z,14Z))

PC(14:1(9Z)/20:3(8Z,11Z,14Z))

C42H76NO8P (753.5308)


   

PC(18:3(9Z,12Z,15Z)/16:1(9Z))

PC(18:3(9Z,12Z,15Z)/16:1(9Z))

C42H76NO8P (753.5308)


   

PC(20:3(8Z,11Z,14Z)/14:1(9Z))

PC(20:3(8Z,11Z,14Z)/14:1(9Z))

C42H76NO8P (753.5308)


   

PC(14:0/20:4(8Z,11Z,14Z,17Z))

PC(14:0/20:4(8Z,11Z,14Z,17Z))

C42H76NO8P (753.5308)


   

PC(20:4(8Z,11Z,14Z,17Z)/14:0)

PC(20:4(8Z,11Z,14Z,17Z)/14:0)

C42H76NO8P (753.5308)


   

1-(1Z-octadecenyl)-2-(8Z,11Z,14Z-icosatrienoyl)-sn-glycero-3-phosphoethanolamine

1-(1Z-octadecenyl)-2-(8Z,11Z,14Z-icosatrienoyl)-sn-glycero-3-phosphoethanolamine

C43H80NO7P (753.5672)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alkyl and the acyl groups at positions 1 and 2 are specified as (1Z)-octadecenyl and (8Z,11Z,14Z)-icosatrienoyl respectively.

   

PE(20:3(5Z,8Z,11Z)/P-18:0)

PE(20:3(5Z,8Z,11Z)/P-18:0)

C43H80NO7P (753.5672)


   

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


   

1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine

1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine

C42H76NO8P (753.5308)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine in which the acyl groups at positions 1 and 2 are specified as heptadecanoyl and arachidonoyl respectively.

   

phosphatidylethanolamine 37:4 zwitterion

phosphatidylethanolamine 37:4 zwitterion

C42H76NO8P (753.5308)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 37 carbons in total with 4 double bonds.

   

phosphatidylcholine 34:4

phosphatidylcholine 34:4

C42H76NO8P (753.5308)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 34 carbons in total with 4 double bonds.

   

1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine zwitterion

1-heptadecanoyl-2-arachidonoyl-sn-glycero-3-phosphoethanolamine zwitterion

C42H76NO8P (753.5308)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at positions 1 and 2 are specified as heptadecanoyl and arachidonoyl respectively.

   

MePC(34:4)

MePC(14:0(1)_20:4)

C43H80NO7P (753.5672)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MePC(33:4)

MePC(11:0_22:4)

C42H76NO8P (753.5308)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(37:3)

Hex1Cer(d19:2_18:1(1+O))

C43H79NO9 (753.5755)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(36:4)

dMePE(16:0(1)_20:4)

C43H80NO7P (753.5672)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(35:4)

dMePE(15:0_20:4)

C42H76NO8P (753.5308)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   

PC P-16:1/18:3;O

PC P-16:1/18:3;O

C42H76NO8P (753.5308)


   
   

PC P-18:1/17:2 or PC O-18:2/17:2

PC P-18:1/17:2 or PC O-18:2/17:2

C43H80NO7P (753.5672)


   
   

PC P-35:3 or PC O-35:4

PC P-35:3 or PC O-35:4

C43H80NO7P (753.5672)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-16:0/22:3 or PE O-16:1/22:3

PE P-16:0/22:3 or PE O-16:1/22:3

C43H80NO7P (753.5672)


   
   

PE P-16:1/22:2 or PE O-16:2/22:2

PE P-16:1/22:2 or PE O-16:2/22:2

C43H80NO7P (753.5672)


   
   

PE P-18:0/20:3 or PE O-18:1/20:3

PE P-18:0/20:3 or PE O-18:1/20:3

C43H80NO7P (753.5672)


   
   

PE P-18:1/20:2 or PE O-18:2/20:2

PE P-18:1/20:2 or PE O-18:2/20:2

C43H80NO7P (753.5672)


   
   

PE P-20:0/18:3 or PE O-20:1/18:3

PE P-20:0/18:3 or PE O-20:1/18:3

C43H80NO7P (753.5672)


   
   

PE P-20:1/18:2 or PE O-20:2/18:2

PE P-20:1/18:2 or PE O-20:2/18:2

C43H80NO7P (753.5672)


   
   

PE P-38:3 or PE O-38:4

PE P-38:3 or PE O-38:4

C43H80NO7P (753.5672)


   
   
   
   
   

GalCer 15:2;O2/22:1;O

GalCer 15:2;O2/22:1;O

C43H79NO9 (753.5755)


   

GalCer 17:0;O3/20:3

GalCer 17:0;O3/20:3

C43H79NO9 (753.5755)


   

GalCer 17:2;O2/20:1;O

GalCer 17:2;O2/20:1;O

C43H79NO9 (753.5755)


   

GalCer 19:0;O3/18:3

GalCer 19:0;O3/18:3

C43H79NO9 (753.5755)


   

GalCer 19:2;O2/18:1;O

GalCer 19:2;O2/18:1;O

C43H79NO9 (753.5755)


   

GalCer 37:3;O2;O

GalCer 37:3;O2;O

C43H79NO9 (753.5755)


   

GalCer 37:3;O3

GalCer 37:3;O3

C43H79NO9 (753.5755)


   

GlcCer 15:2;O2/22:1;O

GlcCer 15:2;O2/22:1;O

C43H79NO9 (753.5755)


   

GlcCer 17:0;O3/20:3

GlcCer 17:0;O3/20:3

C43H79NO9 (753.5755)


   

GlcCer 17:2;O2/20:1;O

GlcCer 17:2;O2/20:1;O

C43H79NO9 (753.5755)


   

GlcCer 19:0;O3/18:3

GlcCer 19:0;O3/18:3

C43H79NO9 (753.5755)


   

GlcCer 19:2;O2/18:1;O

GlcCer 19:2;O2/18:1;O

C43H79NO9 (753.5755)


   

GlcCer 37:3;O2;O

GlcCer 37:3;O2;O

C43H79NO9 (753.5755)


   

GlcCer 37:3;O3

GlcCer 37:3;O3

C43H79NO9 (753.5755)


   

HexCer 15:2;O2/22:1;2OH

HexCer 15:2;O2/22:1;2OH

C43H79NO9 (753.5755)


   

HexCer 15:2;O2/22:1;3OH

HexCer 15:2;O2/22:1;3OH

C43H79NO9 (753.5755)


   

HexCer 15:2;O2/22:1;O

HexCer 15:2;O2/22:1;O

C43H79NO9 (753.5755)


   

HexCer 16:2;O2/21:1;O

HexCer 16:2;O2/21:1;O

C43H79NO9 (753.5755)


   

HexCer 17:0;O3/20:3

HexCer 17:0;O3/20:3

C43H79NO9 (753.5755)


   

HexCer 17:2;O2/20:1;2OH

HexCer 17:2;O2/20:1;2OH

C43H79NO9 (753.5755)


   

HexCer 17:2;O2/20:1;3OH

HexCer 17:2;O2/20:1;3OH

C43H79NO9 (753.5755)


   

HexCer 17:2;O2/20:1;O

HexCer 17:2;O2/20:1;O

C43H79NO9 (753.5755)


   

HexCer 19:0;O3/18:3

HexCer 19:0;O3/18:3

C43H79NO9 (753.5755)


   

HexCer 19:2;O2/18:1;2OH

HexCer 19:2;O2/18:1;2OH

C43H79NO9 (753.5755)


   

HexCer 19:2;O2/18:1;3OH

HexCer 19:2;O2/18:1;3OH

C43H79NO9 (753.5755)


   

HexCer 19:2;O2/18:1;O

HexCer 19:2;O2/18:1;O

C43H79NO9 (753.5755)


   

HexCer 37:3;O2;O

HexCer 37:3;O2;O

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)octadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl]nonadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl]nonadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3s,4e,9e)-3-hydroxy-10-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,9-dien-2-yl]octadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3s,4e,9e)-3-hydroxy-10-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,9-dien-2-yl]octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2s,3e)-2-hydroxy-n-[(2r,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(2s,3e)-2-hydroxy-n-[(2r,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-10-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,9-dien-2-yl)octadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-10-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,9-dien-2-yl)octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-4,8-dien-2-yl]hexadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-4,8-dien-2-yl]hexadec-3-enimidic acid

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl)octadecanimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl)octadecanimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(2r)-2-hydroxy-n-[(2s,3r,4e,8e,10e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl]octadecanimidic acid

(2r)-2-hydroxy-n-[(2s,3r,4e,8e,10e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl]octadecanimidic acid

C43H79NO9 (753.5755)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,7e)-3-hydroxy-8-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,7-dien-2-yl]nonadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,7e)-3-hydroxy-8-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,7-dien-2-yl]nonadec-3-enimidic acid

C43H79NO9 (753.5755)


   

(3e)-2-hydroxy-n-[(4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(3e)-2-hydroxy-n-[(4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-8-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,7-dien-2-yl)nonadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-8-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,7-dien-2-yl)nonadec-3-enimidic acid

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-4,8-dien-2-yl)hexadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}icosa-4,8-dien-2-yl)hexadec-3-enimidic acid

C43H79NO9 (753.5755)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl)nonadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl)nonadec-3-enimidic acid

C43H79NO9 (753.5755)