Exact Mass: 752.426427
Exact Mass Matches: 752.426427
Found 388 metabolites which its exact mass value is equals to given mass value 752.426427
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Melilotoside B
Melilotoside B is found in herbs and spices. Melilotoside B is a constituent of Melilotus albus (white melilot). Constituent of Melilotus albus (white melilot). Melilotoside B is found in herbs and spices and pulses.
Hebevinoside VI
Hebevinoside VI is found in mushrooms. Toxic constituent of the toxic mushroom Hebeloma vinosophyllu
Dioctyltin isooctylthioglycolate
Dioctyltin isooctylthioglycolate is used as a heat stabiliser for rigid PVC used in food and drink application
PA(16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/16:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/16:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(11Z)/PGJ2)
PA(18:1(11Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/PGJ2), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/18:1(11Z))
PA(PGJ2/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/18:1(11Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)/PGJ2)
PA(18:1(9Z)/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/PGJ2), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/18:1(9Z))
PA(PGJ2/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/18:1(9Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PA(18:2(9Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,11Z))
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,11Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PA(18:2(9Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,11Z))
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,11Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PA(18:2(9Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,11Z))
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,11Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
PA(18:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,12Z))
PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/18:2(9Z,12Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
PA(18:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,12Z))
PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/18:2(9Z,12Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
PA(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,12Z))
PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/18:2(9Z,12Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6))
PA(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(6Z,9Z,12Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 6Z,9Z,12Z-octadecatrienoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(6Z,9Z,12Z))
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(6Z,9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 6Z,9Z,12Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)-2OH(5,6))
PA(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9Z,12Z,15Z)/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 9Z,12Z,15Z-octadecatrienoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(9Z,12Z,15Z))
PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 9Z,12Z,15Z-octadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(18:1(12Z)-2OH(9,10)/20:5(5Z,8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(i-16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-16:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-16:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(i-16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-16:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-16:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PerisesaccharideC
(3beta,6alpha,12beta,24E)-6-[(beta-D-xylopyranosyl-(1->3)oxy]dammara-20(21),24-diene-3,12-diol|notoginsenoside T5
cumingianoside C
A triterpenoid saponin that is 25-methoxy-13,30-cyclodammarane-3,7,23,24-tetrol esterified to the coressponding acetate ester at position 3 and attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum, it exhibits antileukemic activity.
Cimiside B
22-O-[beta-D-glucopyranosyl-(1->2)-O-alpha-L-arabinopyranosyl]-3beta,22beta,24-trihydroxy-olean-12-ene
(25R,26R)-26-methoxyspirost-5-en-3beta-ol 3-O-2)-beta-D-glucopyranoside>|(25R,26R)-26-Methoxyspirost-5-en-3beta-ol 3-O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside
(25R)-kingianoside A|(25R)-spirost-5-en-12-one-3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranoside|(25RS)-kingianoside A|kingianoside A
1??,2??-Dihydroxyspirosta-5,25(27)-dien-3??-yl O-??-D-rhamnopyranosyl-(1鈥樏傗垎2)-??-L-galactopyranoside
cimiacerol 3-O-beta-D-xylopyranosyl-(1->3)-beta-D-xylopyranoside|cimiaceroside A
Polypodoside C
(3beta,5alpha,8alpha,25R)-spirost-6-en-5,8-epidioxy-3-ol 3-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-glucopyranoside|pariposide A
brisbagenin 1-O-3)-4-O-acetyl-alpha-L-arabinopyranoside>|brisbagenin 1-O-[O-alpha-L-rhamnopyranosyl-(1->3)-4-O-acetyl-alpha-L-arabinopyranoside]
Antibiotic SB 22484-1|Antibiotic SB 22484-3
C41H56N2O11 (752.3883906000001)
Smilagenin-3-O-??-D-glucopyranosyl (1鈥樏傗垎2)-??-D-galactopyranoside
1alpha,6beta,16beta-trimethoxy-7-hydroxy-8-ethoxy-14alpha-propionyloxy-4beta-(2-methyl)sussinylanthranoyloxymethyl-N-ethylaconitane|alpinine
C41H56N2O11 (752.3883906000001)
1-O-(3-O-(1-oxo-17-oxalyloxydocosyl)-alpha-D-glucopyranosyl)-alpha-D-galactopyranoside|emmyguyacin A
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-hydroxy-3-methylpentanoate
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-hydroxy-3-methylpentanoate [IIN-based on: CCMSLIB00000848597]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-hydroxy-3-methylpentanoate [IIN-based: Match]
PG(13:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PG(15:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PG(17:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))
PG(18:4(6Z,9Z,12Z,15Z)/17:2(9Z,12Z))
PG(20:5(5Z,8Z,11Z,14Z,17Z)/15:1(9Z))
PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/13:0)
PI(12:0/16:1(9Z))
C37H69O13P (752.4475553999999)
PI(13:0/15:1(9Z))
C37H69O13P (752.4475553999999)
PI(14:0/14:1(9Z))
C37H69O13P (752.4475553999999)
PI(14:1(9Z)/14:0)
C37H69O13P (752.4475553999999)
PI(15:1(9Z)/13:0)
C37H69O13P (752.4475553999999)
PI(16:1(9Z)/12:0)
C37H69O13P (752.4475553999999)
Advastab 17mol
Hebevinoside VI
Melilotoside B
PG 35:6
PI 28:1
C37H69O13P (752.4475553999999)
Pariposide A
Cimimanol D
diisooctyl 2,2-[(dioctylstannylene)bis(thio)]diacetate
TRIP
17-[1-[6-(3,5-Dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy-5-methyloxan-2-yl]ethyl]-10,13-dimethyl-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,4,5,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-6-one
(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(7R,9S,10R,13R,14S,16S,17R)-7-hydroxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol
Dioctyltin bis(2-ethylhexyl thioglycolate)
PA(i-16:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-16:0)
PA(i-16:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-16:0)
(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(9S,10R,13R,14S,16S,17R)-7-hydroxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol
[3-Methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-hydroxy-3-methylpentanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate
[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate
[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate
[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonadecanoate
[6-(2-Hexadecanoyloxy-3-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate
[3-[3,4,5-Trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] undecanoate
[6-(3-Dodecanoyloxy-2-heptadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3,4,5-Trihydroxy-6-(2-pentadecanoyloxy-3-tetradecanoyloxypropoxy)oxan-2-yl]methanesulfonic acid
[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-icos-11-enoate
C37H69O13P (752.4475553999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-nonadec-9-enoate
C37H69O13P (752.4475553999999)
[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate
C37H69O13P (752.4475553999999)
[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate
C37H69O13P (752.4475553999999)
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
C37H69O13P (752.4475553999999)
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentadecanoate
C37H69O13P (752.4475553999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate
C37H69O13P (752.4475553999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetradecanoate
C37H69O13P (752.4475553999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
C37H69O13P (752.4475553999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
C37H69O13P (752.4475553999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
C37H69O13P (752.4475553999999)
[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
C37H69O13P (752.4475553999999)
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoate
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-11-enoate
C37H69O13P (752.4475553999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-2-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexadec-9-enoate
C37H69O13P (752.4475553999999)
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-13-enoate
C37H69O13P (752.4475553999999)
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-6-enoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-pentadecanoyloxy-2-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7E,9E)-nonadeca-7,9-dienoate
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-pentadec-9-enoate
C37H69O13P (752.4475553999999)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetradecanoate
C37H69O13P (752.4475553999999)
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-heptadec-9-enoate
C37H69O13P (752.4475553999999)
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-nonadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-11-enoate
C37H69O13P (752.4475553999999)
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-6-enoate
C37H69O13P (752.4475553999999)
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-4-enoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-4-enoate
C37H69O13P (752.4475553999999)
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] octadec-17-enoate
C37H69O13P (752.4475553999999)
[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] undecanoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-pentadecanoyloxy-3-tetradecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-13-enoate
C37H69O13P (752.4475553999999)
[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-hexadec-7-enoate
C37H69O13P (752.4475553999999)
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-9-enoate
C37H69O13P (752.4475553999999)
[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-pentadec-9-enoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-7-enoate
C37H69O13P (752.4475553999999)
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-octadec-9-enoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] dodecanoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R,3R,6R)-6-[(2S)-2-dodecanoyloxy-3-heptadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate
[(2R)-2-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-hexadec-7-enoate
C37H69O13P (752.4475553999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-hexadec-9-enoate
C37H69O13P (752.4475553999999)
[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-heptadec-9-enoate
C37H69O13P (752.4475553999999)
[(2S)-2-decanoyloxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] octadec-17-enoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate
C37H69O13P (752.4475553999999)
[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-nonadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-octadec-7-enoate
C37H69O13P (752.4475553999999)
1-tridecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)
C37H69O13P (752.4475553999999)
1-tetradecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)
C37H69O13P (752.4475553999999)
phosphatidylserine 34:5(1-)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 34 carbons in total and 5 double bonds.
DGDG(22:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
9-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-7-one
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-hydroxy-1,6a,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
(23z,36z,40e)-4,6,19,28,31,39,42-heptahydroxy-18-oxotetratetraconta-23,36,40-trien-2,29,32,43-tetraynoic acid
2-[(4,5-dihydroxy-2-{[10-hydroxy-9-(hydroxymethyl)-2,2,4a,6a,6b,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4-yl]oxy}oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
7-[(4-{[3-(acetyloxy)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-11a-methyl-1-(6-methylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-9a-carboxylic acid
1-[(3r,3ar,4s,5ar,5br,7ar,9s,11ar,11br,13r,13ar,13br)-9-{[(2r,3s,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
[(2r,3s,4s,5r,6r)-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-(acetyloxy)-15-[(2r,4r,5r)-4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
(3s,4r,5r,6s)-5-hydroxy-6-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13's,14'r,16'r,18's)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy]-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl acetate
(2s,3r,4r,5r,6s)-2-{[(1r,2s,3as,3br,4s,7s,9ar,9bs,11ar)-4-hydroxy-3a,6,6,9b,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-7-{[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
1-[(3s,3ar,4s,5ar,5br,7ar,9s,11as,11bs,13r,13ar,13bs)-9-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
(2r,5r,7's,9's,13'r,16's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-one
methyl (1r,14r,15r,18s,19r,20s)-14-[(2s,3r,12bs)-2-[(1e)-1,3-dimethoxy-3-oxoprop-1-en-2-yl]-3-ethyl-8-hydroxy-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-9-yl]-8,18-dihydroxy-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8-tetraene-19-carboxylate
C43H52N4O8 (752.3784952000001)
2-[(3r,6s,9r,15s,18r,21s,24s)-21-benzyl-5,8,17,20,23-pentahydroxy-6,15,18-triisopropyl-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl]ethanimidic acid
(3r,3as,5ar,5br,7ar,11ar,11br,13ar,13bs)-9-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-7-one
(2s,3r,4s,5s)-2-{[(2r,3s,4r,5r,6r)-6-{[(3s,4as,6ar,6bs,8s,8as,12as,14as,14br)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2s,2's,4's,5r,6s,7's,8'r,9's,12's,13'r,16's)-6-methoxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
(1r,2s,3s,4ar,6as,6br,8as,9r,10s,12as,12br)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-hexadecahydropicene-4a-carboxylic acid
(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5r)-2-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(6-{[7-(acetyloxy)-1-(4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl)-3b,6,6,9a,11a-pentamethyl-1h,2h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate
2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl)oxy]oxane-3,4,5-triol
(6-{[7-(acetyloxy)-15-(4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate
2-{[4-hydroxy-3a,6,6,9b,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
5-{[5-(n,5-dihydroxy-3-methylpent-2-enamido)-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-(3-{5-[3-(n,5-dihydroxy-3-methylpent-2-enamido)propyl]-3,6-dihydroxy-2,5-dihydropyrazin-2-yl}propyl)-3-methylpent-2-enimidic acid
C35H56N6O12 (752.3956016000001)
(2s,3e,5r,7e)-10-[(1s,3s,6s)-6-(acetyloxy)-2,2,6-trimethyl-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexyl]-5-hydroxy-1-[(1s,2s)-2-hydroxy-2,6,6-trimethyl-5-oxocyclohex-3-en-1-yl]-3,8-dimethyldeca-3,7-dien-2-yl acetate
2-{21-benzyl-5,8,17,20,23-pentahydroxy-6,15,18-triisopropyl-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl}ethanimidic acid
1-(1-{6-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-5-methyloxan-2-yl}ethyl)-9a,11a-dimethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(8'z,22'z)-15',16',17',18',20',21'-hexahydroxy-6-(2-hydroxybutyl)-5',5',15',19',21',30'-hexamethyl-4',25',29'-trioxaspiro[oxane-2,28'-tricyclo[24.3.1.0³,⁷]triacontane]-3'(7'),8',22'-trien-24'-one
15-hydroxy-n-[2-(5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadec-9-enimidic acid
(3s,4ar,6as,6br,8as,9r,10s,12as,12br)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-2,2,6a,6b,9,12a-hexamethyl-3,4,5,6,7,8,8a,9,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid
[8-ethoxy-11-ethyl-9-hydroxy-6,16,18-trimethoxy-4-(propanoyloxy)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate
C41H56N2O11 (752.3883906000001)
[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-4-{[(2s)-2-methylbutanoyl]oxy}-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate
C41H56N2O11 (752.3883906000001)
1-[(3r,3ar,4s,5ar,5br,7ar,9s,11ar,11br,13r,13ar,13br)-9-{[(2s,3s,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3br,4s,7s,9as,9bs,11ar)-4-hydroxy-3a,6,6,9b,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
5-hydroxy-6-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy}-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl acetate
3-methyl-1-[(3-methyl-1-{[3-methyl-1-({3-methyl-1-oxo-1-[(1,3,4,5,6-pentahydroxyhexan-2-yl)oxy]pentan-2-yl}oxy)-1-oxopentan-2-yl]oxy}-1-oxopentan-2-yl)oxy]-1-oxopentan-2-yl 2-hydroxy-3-methylpentanoate
(2e)-n-{3-[(2s,5s)-5-{3-[(2e)-5-{[(2s)-5-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-hydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl]propyl}-5-hydroxy-3-methylpent-2-enimidic acid
C35H56N6O12 (752.3956016000001)
methyl 14-[2-(1,3-dimethoxy-3-oxoprop-1-en-2-yl)-3-ethyl-8-hydroxy-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-10-yl]-8,18-dihydroxy-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8-tetraene-19-carboxylate
C43H52N4O8 (752.3784952000001)
(2s,3r,4s,5r)-2-{[(2r,3r,4s,5r,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxane-3,4,5-triol
{11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-4-[(2-methylbutanoyl)oxy]-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methyl 2-(3-methyl-2,5-dioxopyrrolidin-1-yl)benzoate
C41H56N2O11 (752.3883906000001)
(9z,15r)-15-hydroxy-n-[2-(5-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadec-9-enimidic acid
2-[(3s,6s,9s,15s,18s,21s,24s)-21-benzyl-5,8,17,20,23-pentahydroxy-6,15,18-triisopropyl-2,14-dioxo-1,4,7,13,16,19,22-heptaazatricyclo[22.3.0.0⁹,¹³]heptacosa-4,7,16,19,22-pentaen-3-yl]ethanimidic acid
(1r,3as,3bs,7s,9as,9bs,11ar)-7-{[(2r,3r,4s,5r,6r)-4-{[(2s,3s,4r,5r)-3-(acetyloxy)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11a-methyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-9a-carboxylic acid
[(2r,3s,4s,5r,6r)-6-{[(1s,3br,4r,5ar,7r,9as,9br,11as)-7-(acetyloxy)-1-[(2s,4r,5s)-4,5-dihydroxy-6-methoxy-6-methylheptan-2-yl]-3b,6,6,9a,11a-pentamethyl-1h,2h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
[(1r,2r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5r)-5-(2-{[(2r,3r,4r,5r)-3,4-dihydroxy-5-[(1r)-2-hydroxy-1-methoxyethyl]oxolan-2-yl]oxy}ethyl)-6-methylheptan-2-yl]-2,3,3b,7-tetrahydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxidanesulfonic acid
C36H64O14S (752.4016564000001)
(3s,4s,5s,6r)-5-hydroxy-6-[(1's,2r,2's,4's,5s,7's,8'r,9'r,12's,13's,14'r,16's,18'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-oloxy]-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl acetate
(2r,3r,4r,5r)-1,2,4,5,6-pentahydroxyhexan-3-yl (2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-hydroxy-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoate
(2r,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl (2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-hydroxy-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoate
(1s,2s,4s,7s,8s,9r,10s,13s,14r,15r,17r)-17-hydroxy-8,10,14-trimethyl-7-(2-methylprop-1-en-1-yl)-15-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-6-one
1-[(3r,3ar,4s,5ar,5br,7ar,9s,11ar,11br,13r,13ar,13br)-9-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{6-methoxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
1-[9-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
1-[(3s,3ar,4s,5ar,5br,7ar,9s,11as,11bs,13r,13ar,13bs)-9-{[(2r,3s,4r,5s)-3,5-dihydroxy-4-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
[(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-4-{[(2s)-2-methylbutanoyl]oxy}-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
C41H56N2O11 (752.3883906000001)
[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-8-ethoxy-11-ethyl-9-hydroxy-6,16,18-trimethoxy-4-(propanoyloxy)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-[(3s)-3-methyl-2,5-dioxopyrrolidin-1-yl]benzoate
C41H56N2O11 (752.3883906000001)
(9z,15s)-15-hydroxy-n-[2-(5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1h-indol-3-yl)ethyl]hexadec-9-enimidic acid
(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-9-(acetyloxy)-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl acetate
(1'r,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-one
(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,6a,6b,9,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate
15',16',17',18',20',21'-hexahydroxy-6-(2-hydroxybutyl)-5',5',15',19',21',30'-hexamethyl-4',25',29'-trioxaspiro[oxane-2,28'-tricyclo[24.3.1.0³,⁷]triacontane]-3'(7'),8',22'-trien-24'-one
17-hydroxy-8,10,14-trimethyl-7-(2-methylprop-1-en-1-yl)-15-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-6-one
(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,16's)-16'-{[(2r,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-en-10'-one
(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(4r,4ar,6as,6br,8ar,9s,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-2,2,4a,6a,6b,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicen-4-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,3ar,5as,7s,9ar,9br,11ar)-1-[(1s)-1-[(2s,5r,6s)-6-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5-methyloxan-2-yl]ethyl]-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-[(1's,2s,2's,4's,5r,6r,7's,8'r,9's,12's,13'r,16's)-6-methoxy-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-[(4,5-dihydroxy-6-{[8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-2-(hydroxymethyl)oxan-3-yl)oxy]oxane-3,4,5-triol
(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9-hydroxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl 2-methylbutanoate
1-[9-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
methyl (1r,14r,15r,18s,19r,20s)-14-[(2s,3r,12bs)-2-[(1e)-1,3-dimethoxy-3-oxoprop-1-en-2-yl]-3-ethyl-8-hydroxy-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-10-yl]-8,18-dihydroxy-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8-tetraene-19-carboxylate
C43H52N4O8 (752.3784952000001)
(4ar,5r,6ar,6br,8ar,10r,12ar,12br,14ar,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-hexadecahydropicene-4a-carboxylic acid
(2r,3s,4s,5s,6s)-2-{[(1s,2r,3ar,3bs,4s,7r,9ar,9br,11as)-4-hydroxy-3a,6,6,9b,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-7-{[(2s,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
1-[(3r,3ar,4s,5ar,5br,7ar,9s,11ar,11br,13r,13ar,13br)-9-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-3-yl]ethanone
(2r,3s,4r,5r)-1,3,4,5,6-pentahydroxyhexan-2-yl (2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-{[(2r,3s)-2-hydroxy-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoyl]oxy}-3-methylpentanoate
3-methyl-1-[(3-methyl-1-{[3-methyl-1-({3-methyl-1-oxo-1-[(1,2,4,5,6-pentahydroxyhexan-3-yl)oxy]pentan-2-yl}oxy)-1-oxopentan-2-yl]oxy}-1-oxopentan-2-yl)oxy]-1-oxopentan-2-yl 2-hydroxy-3-methylpentanoate
12-(acetyloxy)-5,5',10,10',17',17',21,21-octamethyl-15'-oxo-4,4',9,9',18-pentaoxaspiro[pentacyclo[11.7.1.0³,⁵.0⁸,¹⁰.0¹⁴,¹⁹]henicosane-17,14'-tetracyclo[11.3.1.0³,⁵.0⁸,¹⁰]heptadecan]-14(19)-en-12'-yl acetate
(3s,6s,12s,15s)-12-[(2r)-butan-2-yl]-9-[(2s)-butan-2-yl]-3-(1h-indol-3-ylmethyl)-6-isopropyl-15-(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclodocosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol
C39H60N8O7 (752.4584729999999)
n-(4-carbamimidamidobutyl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-4-methylpentanoyl)-5-hydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydroindole-2-carboximidic acid
C35H56N6O12 (752.3956016000001)
(3r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-9-{[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-7-one
(1s,3r,6r,7s,8s,9s,10s,11s,14s,16s)-6-acetyl-14-{[(2r,4r,5r,6r)-5-{[(2s,3r,4r,5r,6r)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9-hydroxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadecan-8-yl (2s)-2-methylbutanoate
(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s)-2-{[(3s,4s,4ar,6ar,6bs,8ar,9r,12as,14ar,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2e)-5-{[(2s)-5-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-{3-[(2s,5s)-5-{3-[(2e)-n,5-dihydroxy-3-methylpent-2-enamido]propyl}-3,6-dihydroxy-2,5-dihydropyrazin-2-yl]propyl}-3-methylpent-2-enimidic acid
C35H56N6O12 (752.3956016000001)
n-(3-{5-[3-(5-{[5-(n,5-dihydroxy-3-methylpent-2-enamido)-2-[(1-hydroxyethylidene)amino]pentanoyl]oxy}-n-hydroxy-3-methylpent-2-enamido)propyl]-3,6-dihydroxy-2,5-dihydropyrazin-2-yl}propyl)-5-hydroxy-3-methylpent-2-enimidic acid
C35H56N6O12 (752.3956016000001)