Exact Mass: 749.5553870000001
Exact Mass Matches: 749.5553870000001
Found 466 metabolites which its exact mass value is equals to given mass value 749.5553870000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PE(P-16:0/22:5(4Z,7Z,10Z,13Z,16Z))
PE(P-16:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/22:5(4Z,7Z,10Z,13Z,16Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(11Z))
PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(11Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(11Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(9Z))
PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(9Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/P-18:1(9Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(11Z))
PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(11Z)), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(9Z))
PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(9Z)), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/P-18:1(9Z)), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0)
PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:5(5Z,8Z,11Z,14Z,17Z)/P-18:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(22:5(4Z,7Z,10Z,13Z,16Z)/P-16:0)
PE(22:5(4Z,7Z,10Z,13Z,16Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(4Z,7Z,10Z,13Z,16Z)/P-16:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(22:5(7Z,10Z,13Z,16Z,19Z)/P-16:0)
PE(22:5(7Z,10Z,13Z,16Z,19Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(7Z,10Z,13Z,16Z,19Z)/P-16:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-16:0/22:5(7Z,10Z,13Z,16Z,19Z))
PE(P-16:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/22:5(7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z))
PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(11Z)/20:4(5Z,8Z,11Z,14Z))
PE(P-18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of arachidonic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of arachidonic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(11Z)/20:4(8Z,11Z,14Z,17Z))
PE(P-18:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(9Z)/20:4(5Z,8Z,11Z,14Z))
PE(P-18:1(9Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of arachidonic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-18:1(9Z)/20:4(8Z,11Z,14Z,17Z))
PE(P-18:1(9Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PS(15:0/18:0)
C39H76NO10P (749.5206565999999)
PS(15:0/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(18:0/15:0)
C39H76NO10P (749.5206565999999)
PS(18:0/15:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants, and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups (i.e. the phosphate moiety, the amino group and the carboxyl group). As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have a palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PE(16:0/18:1(12Z)-2OH(9,10))
C39H76NO10P (749.5206565999999)
PE(16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
PE(18:1(12Z)-2OH(9,10)/16:0)
C39H76NO10P (749.5206565999999)
PE(18:1(12Z)-2OH(9,10)/16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-2OH(9,10)/16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).
nonaprenyl-4-hydroxybenzoate
Nonaprenyl-4-hydroxybenzoate is a member of the class of compounds known as polyprenylphenols. Polyprenylphenols are compounds containing a polyisoprene chain attached to a phenol group. Nonaprenyl-4-hydroxybenzoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Nonaprenyl-4-hydroxybenzoate can be found in a number of food items such as sweet potato, banana, shallot, and swamp cabbage, which makes nonaprenyl-4-hydroxybenzoate a potential biomarker for the consumption of these food products.
bacteriohopane-,32,33,34-triol-35-cyclitolguanine
C42H75N3O8 (749.5553870000001)
PE(16:0e/22:6)
PS(14:0/19:0)
C39H76NO10P (749.5206565999999)
PS(17:0/16:0)
C39H76NO10P (749.5206565999999)
PS(18:0/15:0)
C39H76NO10P (749.5206565999999)
PS(19:0/14:0)
C39H76NO10P (749.5206565999999)
PS(16:0/17:0)
C39H76NO10P (749.5206565999999)
PS(15:0/18:0)
C39H76NO10P (749.5206565999999)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
C42H74N2O7P+ (749.5233364000001)
1-Hexadecanoyl-2-octadecanoyl-sn-glycero-3-phospho-(1-sn-glycerol)(1-)
A 1,2-diacyl-sn-glycero-3-phospho-(1-sn-glycerol)(1-) in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and octadecanoyl (stearoyl) respectively; major species at pH 7.3.
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (Z)-octadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (20Z,23Z,26Z,29Z,32Z,35Z)-octatriaconta-20,23,26,29,32,35-hexaenoate
[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-octanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-hexadecanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-decanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
2-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-dodecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate
(4E,8E,12E)-3-hydroxy-2-[[(14Z,16Z)-2-hydroxydocosa-14,16-dienoyl]amino]docosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]icosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyicosa-11,14-dienoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-2-hydroxyoctadeca-10,12-dienoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]octadeca-4,8,12-triene-1-sulfonic acid
[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-heptanoyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[hydroxy-(3-icosoxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[(2-hexadecanoyloxy-3-octadecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-hexadecoxy-2-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
(4E,8E,12E)-2-[[(Z)-hexacos-15-enoyl]amino]-3-hydroxynonadeca-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxytetracosa-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]hexacosa-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E,12E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxynonadec-4-ene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E)-2-[[(15Z,18Z)-hexacosa-15,18-dienoyl]amino]-3-hydroxynonadeca-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentacosane-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (Z)-tetradec-9-enoate
(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]pentacos-4-ene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]pentacosa-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxytricosa-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
(4E,8E,12E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxytricosa-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxytricos-4-ene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]henicos-4-ene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]henicosane-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetracos-13-enoyl]amino]henicosa-4,8,12-triene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxynonadecane-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] decanoate
(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]henicosa-4,8-diene-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] tetradecanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] dodecanoate
2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytricosane-1-sulfonic acid
C45H83NO5S (749.5991627999999)
[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[hydroxy-(3-nonadecoxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(3-tricosoxy-2-undecanoyloxypropoxy)phosphoryl]oxypropanoic acid
[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[(3-decoxy-2-tetracosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-heptadecanoyloxy-3-heptadecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-henicosanoyloxy-3-tridecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-docosanoyloxy-3-dodecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
[2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[hydroxy-(2-nonadecanoyloxy-3-pentadecoxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[(3-docosoxy-2-dodecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(2-icosanoyloxy-3-tetradecoxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[(2-decanoyloxy-3-tetracosoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[(3-henicosoxy-2-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(2-tricosanoyloxy-3-undecoxypropoxy)phosphoryl]oxypropanoic acid
[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(Z)-heptadec-9-enoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-[4-[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
2-[4-(10,13-dimethyl-3-octadecanoyloxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoylamino]ethanesulfonic acid
2-[4-[3-[(Z)-heptadec-9-enoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
4-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (Z)-hexadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(Z)-heptadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-icos-11-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] hexadecanoate
2-Amino-3-[hydroxy-(3-octanoyloxy-2-pentacosanoyloxypropoxy)phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[(3-heptanoyloxy-2-hexacosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[hydroxy-(3-nonanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[hydroxy-(2-octadecanoyloxy-3-pentadecanoyloxypropoxy)phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[(3-dodecanoyloxy-2-henicosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[hydroxy-(2-nonadecanoyloxy-3-tetradecanoyloxypropoxy)phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[(2-heptadecanoyloxy-3-hexadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[hydroxy-(2-icosanoyloxy-3-tridecanoyloxypropoxy)phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[(3-decanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-Amino-3-[(2-docosanoyloxy-3-undecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
(4Z,7Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosa-4,8-dien-2-yl]hexadeca-4,7-dienamide
(14Z,16Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8-dien-2-yl]docosa-14,16-dienamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadeca-4,8,12-trien-2-yl]henicos-9-enamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8,12-trien-2-yl]docos-11-enamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosa-4,8,12-trien-2-yl]hexadec-7-enamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexacosa-4,8,12-trien-2-yl]dodec-5-enamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8,12-trien-2-yl]tetracos-11-enamide
(18Z,21Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]tetracosa-18,21-dienamide
(10Z,12Z)-N-[(4E,8E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]octadeca-10,12-dienamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacosa-4,8,12-trien-2-yl]tridec-8-enamide
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8,12-trien-2-yl]octadec-11-enamide
2-Amino-3-[(2-heptacosanoyloxy-3-hexanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
(Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8,12-trien-2-yl]tricos-11-enamide
(9E,12E)-N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]octadeca-9,12-dienamide
4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2S)-2-docosanoyloxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
(2S)-2-amino-3-[hydroxy-[(2S)-2-icosanoyloxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate
4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
(2R)-2-amino-3-[hydroxy-[(2S)-3-icosanoyloxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-[hydroxy-[(2S,3R,4E,6E)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]tetradeca-4,6-dienoxy]phosphoryl]oxyethyl-trimethylazanium
4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-henicosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
2-[hydroxy-[(2S,3R,4E,8E)-3-hydroxy-2-[[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
(2R)-2-amino-3-[[(2S)-3-docosanoyloxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-tricosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
(2R)-2-amino-3-[hydroxy-[(2S)-3-nonadecanoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid
C39H76NO10P (749.5206565999999)
4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
(5E,8E,11E,14E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradecan-2-yl]tetracosa-5,8,11,14-tetraenamide
4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[(4E,8E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxydodeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tetradecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]decoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhexadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]icosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]octadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]octoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxydocosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]icos-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxydodec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]icosa-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxydodecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxydocosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-hexadecanoyl-1-octadecanoyl-sn-glycero-3-phospho-(1-sn-glycerol)(1-)
A 1,2-diacyl-sn-glycero-3-phospho-(1-sn-glycerol)(1-) in which the 1- and 2-acyl groups are specified as octadecanoyl (stearoyl) and hexadecanoyl (palmitoyl) respectively; major species at pH 7.3.
1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-tridecanoyl-2-eicosanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-eicosanoyl-2-tridecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphoserine
C39H76NO10P (749.5206565999999)
1-octadecadienyl-2-icosatetraenoyl-sn-glycero-3-phosphoethanolamine
A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alk-1-enyl and acyl groups are specified as octadecadienyl and icosatetraenoyl respectively.
phosphatidylethanolamine P-38:5
A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl and acyl groups at positions 1 and 2 contain 38 carbon atoms in total with 5 additional double bonds.
MePC(34:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(38:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Hex1Cer(37:5)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
dMePE(36:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
n-[(2s,3r)-3-hydroxy-1-[(2s,4r)-2-{[(1s)-1-{[(1s)-3-hydroxy-1-{[(2s)-1-oxopropan-2-yl]-c-hydroxycarbonimidoyl}propyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-4-methylpyrrolidin-1-yl]-1-oxobutan-2-yl]octadec-9-enimidic acid
(9z)-n-[(2s,3r)-3-hydroxy-1-[(2s,4r)-2-{[(1s)-1-{[(1s)-3-hydroxy-1-{[(2s)-1-oxopropan-2-yl]-c-hydroxycarbonimidoyl}propyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-4-methylpyrrolidin-1-yl]-1-oxobutan-2-yl]octadec-9-enimidic acid
n-[3-hydroxy-1-(2-{[1-({3-hydroxy-1-[(1-oxopropan-2-yl)-c-hydroxycarbonimidoyl]propyl}-c-hydroxycarbonimidoyl)-2-methylpropyl]-c-hydroxycarbonimidoyl}-4-methylpyrrolidin-1-yl)-1-oxobutan-2-yl]octadec-9-enimidic acid
7-[(4s,6r,10s)-11-[(4-carbamimidamidobutoxy)carbonyl]-10-methyl-7,9,12-triazatricyclo[6.3.1.0⁴,¹²]dodeca-1(11),8-dien-6-yl]heptyl (1s,6s,10r)-10-heptyl-6-methyl-7,9,12-triazatricyclo[6.3.1.0⁴,¹²]dodeca-4,7-diene-5-carboxylate
C41H67N9O4 (749.5315741999999)