Exact Mass: 740.5339242

Exact Mass Matches: 740.5339242

Found 500 metabolites which its exact mass value is equals to given mass value 740.5339242, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-(octadecanoyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-(octadecanoyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

[(2R)-2-(octadecanoyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-(octadecanoyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

[(2R)-2-(octadecanoyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(11Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(6,8,11)-OH(5)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/18:1(11Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

[(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(9Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

[(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(6,8,11)-OH(5)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/18:1(9Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:2(10E,12Z)+=O(9)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/20:1(11Z)), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:2(9Z,11E)+=O(13)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/20:1(11Z)), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:3(10,12,15)-OH(9)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/20:1(11Z)), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:1(11Z)/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:1(11Z)/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:3(9,11,15)-OH(13)/20:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/20:1(11Z)), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z)), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 11Z,14Z-eicosadienoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z)), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 11Z,14Z-eicosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C41H73O9P (740.4991938)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d16:1/20:3(6,8,11)-OH(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d16:1/20:3(6,8,11)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:3(6,8,11)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyeicosatetrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/18:2(10E,12Z)+=O(9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(10E,12Z)-9-oxooctadeca-10,12-dienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:1/18:2(10E,12Z)+=O(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/18:2(10E,12Z)+=O(9)) consists of a sphingosine backbone and a 9-oxo-octadecadienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/18:2(9Z,11E)+=O(13))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(9Z,11E)-13-oxooctadeca-9,11-dienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:1/18:2(9Z,11E)+=O(13)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/18:2(9Z,11E)+=O(13)) consists of a sphingosine backbone and a 13-oxo-octadecadienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/18:3(10,12,15)-OH(9))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:1/18:3(10,12,15)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/18:3(10,12,15)-OH(9)) consists of a sphingosine backbone and a 9-hydroxyoctadecatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:1/18:3(9,11,15)-OH(13))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienamido]octadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:1/18:3(9,11,15)-OH(13)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:1/18:3(9,11,15)-OH(13)) consists of a sphingosine backbone and a 13-hydroxyoctadecatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:2(4E,14Z)/18:1(12Z)-O(9S,10R))

(2-{[(2S,3R,4E,14Z)-3-hydroxy-2-(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanamido)octadeca-4,14-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:2(4E,14Z)/18:1(12Z)-O(9S,10R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:2(4E,14Z)/18:1(12Z)-O(9S,10R)) consists of a sphingosine backbone and a 9,10-epoxy-octadecenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d18:2(4E,14Z)/18:1(9Z)-O(12,13))

(2-{[(2S,3R,4E,14Z)-3-hydroxy-2-[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enamido]octadeca-4,14-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H77N2O7P (740.5468102)


SM(d18:2(4E,14Z)/18:1(9Z)-O(12,13)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d18:2(4E,14Z)/18:1(9Z)-O(12,13)) consists of a sphingosine backbone and a 12,13-epoxy-octadecenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

preswinholide A ethyl ester

preswinholide A ethyl ester

C41H72O11 (740.5074362)


   

PA(17:1(9Z)/22:2(13Z,16Z))

1-(9Z-heptadecenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(17:2(9Z,12Z)/22:1(11Z))

1-(9Z,12Z-heptadecadienoyl)-2-(11Z-docosenoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(18:3(6Z,9Z,12Z)/21:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-heneicosanoyl-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(18:3(9Z,12Z,15Z)/21:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-heneicosanoyl-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(19:0/20:3(8Z,11Z,14Z))

1-nonadecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(19:1(9Z)/20:2(11Z,14Z))

1-(9Z-nonadecenoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(20:2(11Z,14Z)/19:1(9Z))

1-(11Z,14Z-eicosadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(20:3(8Z,11Z,14Z)/19:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-nonadecanoyl-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(21:0/18:3(6Z,9Z,12Z))

1-heneicosanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(21:0/18:3(9Z,12Z,15Z))

1-heneicosanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(22:1(11Z)/17:2(9Z,12Z))

1-(11Z-docosenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(22:2(13Z,16Z)/17:1(9Z))

1-(13Z,16Z-docosadienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA(O-20:0/20:3(8Z,11Z,14Z))

1-eicosyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C43H81O7P (740.5719606)


   

PA(P-18:0/22:2(13Z,16Z))

1-(1Z-octadecenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C43H81O7P (740.5719606)


   

PA(P-20:0/20:2(11Z,14Z))

1-(1Z-eicosenyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C43H81O7P (740.5719606)


   

PA 39:3

1-heneicosanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C42H77O8P (740.5355772)


   

PA O-40:3

1-(1Z-octadecenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C43H81O7P (740.5719606)


   

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(18:0/20:3(5Z,11Z,14Z)-O(8,9))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(18:0/20:3(8Z,11Z,14Z)-O(5,6))

C41H73O9P (740.4991938)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C41H73O9P (740.4991938)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C41H73O9P (740.4991938)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/18:0)

C41H73O9P (740.4991938)


   

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/18:0)

C41H73O9P (740.4991938)


   

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

PA(18:1(9Z)/20:3(6,8,11)-OH(5))

C41H73O9P (740.4991938)


   

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

PA(20:3(6,8,11)-OH(5)/18:1(9Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

PA(20:1(11Z)/18:2(10E,12Z)+=O(9))

C41H73O9P (740.4991938)


   

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

PA(18:2(10E,12Z)+=O(9)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

PA(20:1(11Z)/18:2(9Z,11E)+=O(13))

C41H73O9P (740.4991938)


   

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

PA(18:2(9Z,11E)+=O(13)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(i-18:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(i-18:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(i-18:0/20:3(5Z,11Z,14Z)-O(8,9))

C41H73O9P (740.4991938)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(i-18:0/20:3(8Z,11Z,14Z)-O(5,6))

C41H73O9P (740.4991938)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(i-18:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C41H73O9P (740.4991938)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(i-18:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(i-18:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(i-18:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(i-18:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C41H73O9P (740.4991938)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-18:0)

C41H73O9P (740.4991938)


   

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(i-18:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C41H73O9P (740.4991938)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/i-18:0)

C41H73O9P (740.4991938)


   

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

PA(18:1(11Z)/20:3(6,8,11)-OH(5))

C41H73O9P (740.4991938)


   

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

PA(20:3(6,8,11)-OH(5)/18:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

PA(20:1(11Z)/18:3(10,12,15)-OH(9))

C41H73O9P (740.4991938)


   

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

PA(18:3(10,12,15)-OH(9)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

PA(20:1(11Z)/18:3(9,11,15)-OH(13))

C41H73O9P (740.4991938)


   

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

PA(18:3(9,11,15)-OH(13)/20:1(11Z))

C41H73O9P (740.4991938)


   

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

PA(20:2(11Z,14Z)/18:1(12Z)-O(9S,10R))

C41H73O9P (740.4991938)


   

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

PA(18:1(12Z)-O(9S,10R)/20:2(11Z,14Z))

C41H73O9P (740.4991938)


   

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

PA(20:2(11Z,14Z)/18:1(9Z)-O(12,13))

C41H73O9P (740.4991938)


   

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

PA(18:1(9Z)-O(12,13)/20:2(11Z,14Z))

C41H73O9P (740.4991938)


   

SM(d16:1/20:3(6,8,11)-OH(5))

SM(d16:1/20:3(6,8,11)-OH(5))

C41H77N2O7P (740.5468102)


   

SM(d18:1/18:2(10E,12Z)+=O(9))

SM(d18:1/18:2(10E,12Z)+=O(9))

C41H77N2O7P (740.5468102)


   

SM(d18:1/18:2(9Z,11E)+=O(13))

SM(d18:1/18:2(9Z,11E)+=O(13))

C41H77N2O7P (740.5468102)


   

SM(d18:1/18:3(10,12,15)-OH(9))

SM(d18:1/18:3(10,12,15)-OH(9))

C41H77N2O7P (740.5468102)


   

SM(d18:1/18:3(9,11,15)-OH(13))

SM(d18:1/18:3(9,11,15)-OH(13))

C41H77N2O7P (740.5468102)


   

SM(d18:2(4E,14Z)/18:1(12Z)-O(9S,10R))

SM(d18:2(4E,14Z)/18:1(12Z)-O(9S,10R))

C41H77N2O7P (740.5468102)


   

SM(d18:2(4E,14Z)/18:1(9Z)-O(12,13))

SM(d18:2(4E,14Z)/18:1(9Z)-O(12,13))

C41H77N2O7P (740.5468102)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[(2R)-3-[(Z)-hexadec-1-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-hexadec-1-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(Z)-hexadec-1-enoxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-1-enoxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(Z)-hexadec-1-enoxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-1-enoxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[(2S)-3-[(Z)-hexadec-1-enoxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(Z)-hexadec-1-enoxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-pentadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-heptadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] heptadecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (Z)-nonadec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] undecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] pentadecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] tridecanoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] (Z)-tridec-9-enoate

C41H73O9P (740.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H73O9P (740.4991938)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C49H72O5 (740.5379462)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C49H72O5 (740.5379462)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C49H72O5 (740.5379462)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C49H72O5 (740.5379462)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C42H76O10 (740.5438196)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C42H76O10 (740.5438196)


   

6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C42H76O10 (740.5438196)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

C42H76O10 (740.5438196)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H76O10 (740.5438196)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H76O10 (740.5438196)


   

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

3,4,5-trihydroxy-6-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(Z)-nonadec-9-enoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

[1-hexadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hexadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate

C42H76O10 (740.5438196)


   

6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C42H76O10 (740.5438196)


   

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[2-dodecanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-dodecanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H76O10 (740.5438196)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C42H76O10 (740.5438196)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-hexadecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

3,4,5-trihydroxy-6-[3-[(Z)-octadec-9-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(Z)-octadec-9-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C41H72O11 (740.5074362)


   

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z,17Z)-icosa-11,14,17-trienoate

(1-nonadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H77O8P (740.5355772)


   

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H77O8P (740.5355772)


   

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C42H77O8P (740.5355772)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C42H77O8P (740.5355772)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C42H77O8P (740.5355772)


   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

C42H77O8P (740.5355772)


   

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H77O8P (740.5355772)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

C42H77O8P (740.5355772)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] tricosanoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] tricosanoate

C42H77O8P (740.5355772)


   

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

C42H77O8P (740.5355772)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

C42H77O8P (740.5355772)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z)-docosa-10,13,16-trienoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H77O8P (740.5355772)


   

[(E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H77N2O7P (740.5468102)


   

[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H77N2O7P (740.5468102)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-octadec-9-enoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-octadec-9-enoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H77N2O7P (740.5468102)


   

[3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H77N2O7P (740.5468102)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C42H77O8P (740.5355772)


   
   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate

C42H76O10 (740.5438196)


   

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H77O8P (740.5355772)


   

2-[[3-[(E)-heptadec-7-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(E)-heptadec-7-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate

C42H76O10 (740.5438196)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate

C42H76O10 (740.5438196)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate

C42H76O10 (740.5438196)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H76O10 (740.5438196)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C42H77O8P (740.5355772)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C42H77O8P (740.5355772)


   

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

[(2S)-1-[(E)-hexadec-7-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C42H77O8P (740.5355772)


   

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C42H76O10 (740.5438196)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

C42H77O8P (740.5355772)


   
   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-1-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate

C42H76O10 (740.5438196)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C42H77O8P (740.5355772)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H77O8P (740.5355772)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] tricosanoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] tricosanoate

C42H77O8P (740.5355772)


   

2-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] henicosanoate

C42H77O8P (740.5355772)


   

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[3-heptadecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptadecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

C42H76O10 (740.5438196)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C42H76O10 (740.5438196)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C42H76O10 (740.5438196)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C42H76O10 (740.5438196)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate

C42H76O10 (740.5438196)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C42H76O10 (740.5438196)


   

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate

C42H76O10 (740.5438196)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (E)-tricos-11-enoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (E)-tricos-11-enoate

C42H77O8P (740.5355772)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C42H76O10 (740.5438196)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C42H76O10 (740.5438196)


   

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-nonadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H77O8P (740.5355772)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C42H77O8P (740.5355772)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate

C42H76O10 (740.5438196)


   

2-[hydroxy-[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C42H76O10 (740.5438196)


   

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-nonadecanoyloxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H77O8P (740.5355772)


   

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

[1-carboxy-3-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[3-hexadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-hexadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-heptanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptanoyloxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[2-hexadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

2-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H75NO8P+ (740.523002)


   

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C45H74NO7+ (740.5464993999999)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[carboxy-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C44H70NO8+ (740.510116)


   

2-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[carboxy-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C44H70NO8+ (740.510116)


   

2-[hydroxy-[2-hydroxy-3-[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(22Z,25Z,28Z,31Z)-tetratriaconta-22,25,28,31-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-decoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-hexanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[2-decanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-decanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H79NO7P+ (740.5593853999999)


   

SM(36:4)

SM(t18:1_18:3)

C41H77N2O7P (740.5468102)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(38:3)

PEt(20:1(1)_18:2)

C43H81O7P (740.5719606)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(38:3)

BisMePA(18:2(1)_20:1)

C43H81O7P (740.5719606)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(33:2)

MGDG(15:0_18:2)

C42H76O10 (740.5438196)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

phSM(36:4)

phSM(d18:2_18:2)

C41H77N2O7P (740.5468102)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

TG(45:12)

TG(22:6_11:2_12:4)

C48H68O6 (740.5015628000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

ethyl (2e,4e,7s)-7-hydroxy-4-methyl-8-[(2r,6s)-6-[(2s,3s,4s,6r,7s,8s,9s,10s,11s)-4,6,8,10-tetrahydroxy-2-methoxy-13-[(2s,4r,6s)-4-methoxy-6-methyloxan-2-yl]-3,7,9,11-tetramethyltridecyl]-5,6-dihydro-2h-pyran-2-yl]octa-2,4-dienoate

ethyl (2e,4e,7s)-7-hydroxy-4-methyl-8-[(2r,6s)-6-[(2s,3s,4s,6r,7s,8s,9s,10s,11s)-4,6,8,10-tetrahydroxy-2-methoxy-13-[(2s,4r,6s)-4-methoxy-6-methyloxan-2-yl]-3,7,9,11-tetramethyltridecyl]-5,6-dihydro-2h-pyran-2-yl]octa-2,4-dienoate

C41H72O11 (740.5074362)


   

ethyl 7-hydroxy-4-methyl-8-{6-[4,6,8,10-tetrahydroxy-2-methoxy-13-(4-methoxy-6-methyloxan-2-yl)-3,7,9,11-tetramethyltridecyl]-5,6-dihydro-2h-pyran-2-yl}octa-2,4-dienoate

ethyl 7-hydroxy-4-methyl-8-{6-[4,6,8,10-tetrahydroxy-2-methoxy-13-(4-methoxy-6-methyloxan-2-yl)-3,7,9,11-tetramethyltridecyl]-5,6-dihydro-2h-pyran-2-yl}octa-2,4-dienoate

C41H72O11 (740.5074362)


   

(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(3r)-1,3-dihydroxy-12-methyltetradecylidene]amino}-1-hydroxy-5-methoxy-5-oxopentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid

(2s)-2-{[(2s)-2-{[(2s)-2-{[(2s)-2-{[(3r)-1,3-dihydroxy-12-methyltetradecylidene]amino}-1-hydroxy-5-methoxy-5-oxopentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid

C39H72N4O9 (740.5299022)


   

2-[(2-{[2-({2-[(1,3-dihydroxy-12-methyltetradecylidene)amino]-1-hydroxy-5-methoxy-5-oxopentylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-4-methylpentanoic acid

2-[(2-{[2-({2-[(1,3-dihydroxy-12-methyltetradecylidene)amino]-1-hydroxy-5-methoxy-5-oxopentylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene)amino]-4-methylpentanoic acid

C39H72N4O9 (740.5299022)