Exact Mass: 739.5598

Exact Mass Matches: 739.5598

Found 500 metabolites which its exact mass value is equals to given mass value 739.5598, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PE(16:0/20:4(8Z,11Z,14Z,17Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:2(9Z,12Z)/18:2(9Z,12Z))

(2-aminoethoxy)[(2R)-2,3-bis[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:2(9Z,12Z)/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of two chains of linoleic acid at the C-1 and C-2 positions. The linoleic acid moieties are derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:2(9Z,12Z)/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of two chains of linoleic acid at the C-1 and C-2 positions. The linoleic acid moieties are derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(15:0/18:4(6Z,9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C41H74NO8P (739.5152)


PC(15:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(15:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(15:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(6Z,9Z,12Z)/P-16:0)

[2-({2-[(1Z)-hexadec-1-en-1-yloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C42H78NO7P (739.5516)


PC(18:3(6Z,9Z,12Z)/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/P-16:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(18:3(6Z,9Z,12Z)/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/P-16:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(9Z,12Z,15Z)/P-16:0)

[2-({2-[(1Z)-hexadec-1-en-1-yloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C42H78NO7P (739.5516)


PC(18:3(9Z,12Z,15Z)/P-16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/P-16:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(18:4(6Z,9Z,12Z,15Z)/15:0)

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(pentadecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C41H74NO8P (739.5152)


PC(18:4(6Z,9Z,12Z,15Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/15:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:4(6Z,9Z,12Z,15Z)/15:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:4(6Z,9Z,12Z,15Z)/15:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(14:0/22:4(7Z,10Z,13Z,16Z))

(2-aminoethoxy)[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(14:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the adrenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(14:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(14:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 7Z,10Z,13Z,16Z-docosatetraenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:0/20:4)

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:1(9Z)/20:3(5Z,8Z,11Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(16:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of mead acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of mead acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:0/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(11Z)/18:3(6Z,9Z,12Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(11Z)/18:3(9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/18:3(6Z,9Z,12Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one 9Z-octadecenoyl chain to the C-1 atom, and one 6Z,9Z,12Z-octadecatrienoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/18:3(9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:3(6Z,9Z,12Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:3(6Z,9Z,12Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one 6Z,9Z,12Z-octadecatrienoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:3(9Z,12Z,15Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:3(9Z,12Z,15Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:3(9Z,12Z,15Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:3(9Z,12Z,15Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:4(6Z,9Z,12Z,15Z)/18:0)

(2-aminoethoxy)[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(18:4(6Z,9Z,12Z,15Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:4(6Z,9Z,12Z,15Z)/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:3(5Z,8Z,11Z)/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(20:3(5Z,8Z,11Z)/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/16:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:3(5Z,8Z,11Z)/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/16:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:3(8Z,11Z,14Z)/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(20:3(8Z,11Z,14Z)/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/16:1(9Z)), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:4(5Z,8Z,11Z,14Z)/16:0)

(2-aminoethoxy)[(2R)-2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:4(8Z,11Z,14Z,17Z)/16:0)

(2-aminoethoxy)[(2R)-2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(20:4(8Z,11Z,14Z,17Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:4(8Z,11Z,14Z,17Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(22:4(7Z,10Z,13Z,16Z)/14:0)

(2-aminoethoxy)[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C41H74NO8P (739.5152)


PE(22:4(7Z,10Z,13Z,16Z)/14:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:4(7Z,10Z,13Z,16Z)/14:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:4(7Z,10Z,13Z,16Z)/14:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(22:4(7Z,10Z,13Z,16Z)/14:0), in particular, consists of one 7Z,10Z,13Z,16Z-docosatetraenoyl chain to the C-1 atom, and one tetradecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PC(P-16:0/18:3(6Z,9Z,12Z))

(2-{[(2S)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO7P (739.5516)


PC(P-16:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-16:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of g-linolenic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(P-16:0/18:3(9Z,12Z,15Z))

(2-{[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO7P (739.5516)


PC(P-16:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of a-linolenic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-16:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-16:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of a-linolenic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

(2R,3E)-2-hydroxy-N-[(2S,3R,4E,8E)-1-beta-D-glucopyranosyloxy-3-hydroxy-9-methylheptadec-4,8-dien-2-yl]octadec-3-enamide|alternaroside B|nor-cerebroside C

(2R,3E)-2-hydroxy-N-[(2S,3R,4E,8E)-1-beta-D-glucopyranosyloxy-3-hydroxy-9-methylheptadec-4,8-dien-2-yl]octadec-3-enamide|alternaroside B|nor-cerebroside C

C42H77NO9 (739.5598)


   

(2R,3E)-2-hydroxy-N-[(2S,3R,4E,8Z)-1-beta-D-glucopyranosyloxy-3-hydroxyoctadec-4,8-dien-2-yl]octadec-3-enamide|alternaroside C

(2R,3E)-2-hydroxy-N-[(2S,3R,4E,8Z)-1-beta-D-glucopyranosyloxy-3-hydroxyoctadec-4,8-dien-2-yl]octadec-3-enamide|alternaroside C

C42H77NO9 (739.5598)


   
   

dinorbatzelladine A

dinorbatzelladine A

C40H69N9O4 (739.5472)


   

GlcCer(d15:2(4E,6E)/22:0)

N-(docosanoyl)-1-beta-glucosyl-4E,6E-pentadecasphingadienine

C43H81NO8 (739.5962)


   

PC(O-14:0/20:4)

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[(tetradecyloxy)methyl]-, inner salt, 4-oxide, [R-(all-Z)]-

C42H78NO7P (739.5516)


   

PC(O-14:0/20:4)[U]

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[(tetradecyloxy)methyl]-, inner salt, 4-oxide, (all-Z)-

C42H78NO7P (739.5516)


   

1-tetradecanoyl-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

1-tetradecanoyl-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphocholine

C42H78NO7P (739.5516)


   

Lecithin

1-(1-Enyl-palmitoyl)-2-alpha-linolenoyl-sn-glycero-3-phosphocholine

C42H78NO7P (739.5516)


   

PC(O-16:0/18:4(6Z,9Z,12Z,15Z))

1-hexadecyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphocholine

C42H78NO7P (739.5516)


   

1-(10-methyl-hexadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

1-(10-methyl-hexadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

C42H78NO7P (739.5516)


   

PC O-34:4

1-(1Z-hexadecenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphocholine

C42H78NO7P (739.5516)


   

PE O-37:4

1-(10-methyl-hexadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerophosphoethanolamine

C42H78NO7P (739.5516)


   

HexCer 36:3;O3

N-(2R-hydroxy-heptadecanoyl)-1-beta-D-glucosyl-9-methyl-sphing-4E,8E,10E-trienine

C42H77NO9 (739.5598)


   

HexCer 37:2;O2

N-(docosanoyl)-1-beta-glucosyl-4E,6E-pentadecasphingadienine

C43H81NO8 (739.5962)


   

1,2-Dipalmitoyl-rac-glycero-3-PG (ammonium salt)

1,2-Dipalmitoyl-rac-glycero-3-PG (ammonium salt)

C38H78NO10P (739.5363)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z)-10-[3-[(Z)-oct-2-enyl]oxiran-2-yl]deca-5,8-dienoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(Z)-7-[3-[(2Z,5Z)-undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoylamino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trienyl]oxiran-2-yl]butanoylamino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]amino]hexadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]hexadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,14Z)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]octadeca-4,14-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

HexCer 29:2;2O/8:0

HexCer 29:2;2O/8:0

C43H81NO8 (739.5962)


   

HexCer 31:2;2O/6:0

HexCer 31:2;2O/6:0

C43H81NO8 (739.5962)


   

HexCer 30:2;2O/7:0

HexCer 30:2;2O/7:0

C43H81NO8 (739.5962)


   

HexCer 9:0;2O/28:2

HexCer 9:0;2O/28:2

C43H81NO8 (739.5962)


   

HexCer 33:2;2O/4:0

HexCer 33:2;2O/4:0

C43H81NO8 (739.5962)


   

HexCer 9:1;2O/28:1

HexCer 9:1;2O/28:1

C43H81NO8 (739.5962)


   

HexCer 35:2;2O/2:0

HexCer 35:2;2O/2:0

C43H81NO8 (739.5962)


   

HexCer 34:2;2O/3:0

HexCer 34:2;2O/3:0

C43H81NO8 (739.5962)


   

HexCer 32:2;2O/5:0

HexCer 32:2;2O/5:0

C43H81NO8 (739.5962)


   

HexCer 28:2;2O/9:0

HexCer 28:2;2O/9:0

C43H81NO8 (739.5962)


   

HexCer 21:0;2O/16:2

HexCer 21:0;2O/16:2

C43H81NO8 (739.5962)


   

HexCer 27:2;2O/10:0

HexCer 27:2;2O/10:0

C43H81NO8 (739.5962)


   

HexCer 26:2;2O/11:0

HexCer 26:2;2O/11:0

C43H81NO8 (739.5962)


   

HexCer 19:1;2O/18:1

HexCer 19:1;2O/18:1

C43H81NO8 (739.5962)


   

HexCer 13:1;2O/24:1

HexCer 13:1;2O/24:1

C43H81NO8 (739.5962)


   

HexCer 13:0;2O/24:2

HexCer 13:0;2O/24:2

C43H81NO8 (739.5962)


   

HexCer 16:1;2O/21:1

HexCer 16:1;2O/21:1

C43H81NO8 (739.5962)


   

HexCer 11:1;2O/26:1

HexCer 11:1;2O/26:1

C43H81NO8 (739.5962)


   

HexCer 24:1;2O/13:1

HexCer 24:1;2O/13:1

C43H81NO8 (739.5962)


   

HexCer 18:0;2O/19:2

HexCer 18:0;2O/19:2

C43H81NO8 (739.5962)


   

HexCer 11:0;2O/26:2

HexCer 11:0;2O/26:2

C43H81NO8 (739.5962)


   

HexCer 20:1;2O/17:1

HexCer 20:1;2O/17:1

C43H81NO8 (739.5962)


   

HexCer 16:0;2O/21:2

HexCer 16:0;2O/21:2

C43H81NO8 (739.5962)


   

HexCer 21:1;2O/16:1

HexCer 21:1;2O/16:1

C43H81NO8 (739.5962)


   

HexCer 15:0;2O/22:2

HexCer 15:0;2O/22:2

C43H81NO8 (739.5962)


   

HexCer 15:1;2O/22:1

HexCer 15:1;2O/22:1

C43H81NO8 (739.5962)


   

HexCer 19:0;2O/18:2

HexCer 19:0;2O/18:2

C43H81NO8 (739.5962)


   

HexCer 12:2;2O/25:0

HexCer 12:2;2O/25:0

C43H81NO8 (739.5962)


   

HexCer 13:2;2O/24:0

HexCer 13:2;2O/24:0

C43H81NO8 (739.5962)


   

HexCer 20:0;2O/17:2

HexCer 20:0;2O/17:2

C43H81NO8 (739.5962)


   

HexCer 18:2;2O/18:1;O

HexCer 18:2;2O/18:1;O

C42H77NO9 (739.5598)


   

HexCer 22:2;2O/14:1;O

HexCer 22:2;2O/14:1;O

C42H77NO9 (739.5598)


   

HexCer 18:1;2O/18:2;O

HexCer 18:1;2O/18:2;O

C42H77NO9 (739.5598)


   

HexCer 21:3;2O/15:0;O

HexCer 21:3;2O/15:0;O

C42H77NO9 (739.5598)


   

HexCer 16:3;2O/20:0;O

HexCer 16:3;2O/20:0;O

C42H77NO9 (739.5598)


   

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

HexCer 20:3;2O/16:0;O

HexCer 20:3;2O/16:0;O

C42H77NO9 (739.5598)


   

HexCer 20:1;2O/16:2;O

HexCer 20:1;2O/16:2;O

C42H77NO9 (739.5598)


   

HexCer 20:2;2O/16:1;O

HexCer 20:2;2O/16:1;O

C42H77NO9 (739.5598)


   

HexCer 21:2;2O/15:1;O

HexCer 21:2;2O/15:1;O

C42H77NO9 (739.5598)


   

HexCer 17:3;2O/19:0;O

HexCer 17:3;2O/19:0;O

C42H77NO9 (739.5598)


   

HexCer 18:3;2O/18:0;O

HexCer 18:3;2O/18:0;O

C42H77NO9 (739.5598)


   

HexCer 19:3;2O/17:0;O

HexCer 19:3;2O/17:0;O

C42H77NO9 (739.5598)


   

HexCer 22:3;2O/14:0;O

HexCer 22:3;2O/14:0;O

C42H77NO9 (739.5598)


   

HexCer 19:2;2O/17:1;O

HexCer 19:2;2O/17:1;O

C42H77NO9 (739.5598)


   

HexCer 16:2;2O/20:1;O

HexCer 16:2;2O/20:1;O

C42H77NO9 (739.5598)


   

HexCer 17:2;2O/19:1;O

HexCer 17:2;2O/19:1;O

C42H77NO9 (739.5598)


   

HexCer 16:1;2O/20:2;O

HexCer 16:1;2O/20:2;O

C42H77NO9 (739.5598)


   

(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenamide

(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenamide

C50H77NO3 (739.5903)


   

(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenamide

(9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-[(E)-1,3-dihydroxyoct-4-en-2-yl]dotetraconta-9,12,15,18,21,24,27,30,33,36,39-undecaenamide

C50H77NO3 (739.5903)


   

(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide

(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]dotriaconta-5,8,11,14,17,20,23,26,29-nonaenamide

C50H77NO3 (739.5903)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]tetratriaconta-7,10,13,16,19,22,25,28,31-nonaenamide

C50H77NO3 (739.5903)


   

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-(1,3-dihydroxyoctan-2-yl)dotetraconta-6,9,12,15,18,21,24,27,30,33,36,39-dodecaenamide

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-N-(1,3-dihydroxyoctan-2-yl)dotetraconta-6,9,12,15,18,21,24,27,30,33,36,39-dodecaenamide

C50H77NO3 (739.5903)


   

2-[3-nonanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[3-nonadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[2-[(Z)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(Z)-icos-11-enoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[3-dodecanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-dodecanoyloxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[3-octadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-octadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[3-icosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-icosanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[3-heptadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-heptadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[2-[(Z)-docos-13-enoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(Z)-docos-13-enoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

2-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H81NO8 (739.5962)


   

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(E)-1,3-dihydroxydec-4-en-2-yl]tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenamide

(7Z,10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z,34Z,37Z)-N-[(E)-1,3-dihydroxydec-4-en-2-yl]tetraconta-7,10,13,16,19,22,25,28,31,34,37-undecaenamide

C50H77NO3 (739.5903)


   

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenamide

(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-N-[(4E,8E)-1,3-dihydroxytetradeca-4,8-dien-2-yl]hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenamide

C50H77NO3 (739.5903)


   

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenamide

(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z,32Z,35Z)-N-[(4E,8E)-1,3-dihydroxydodeca-4,8-dien-2-yl]octatriaconta-8,11,14,17,20,23,26,29,32,35-decaenamide

C50H77NO3 (739.5903)


   

HexCer 22:3;3O/13:1;(2OH)

HexCer 22:3;3O/13:1;(2OH)

C41H73NO10 (739.5234)


   

HexCer 21:3;3O/14:1;(2OH)

HexCer 21:3;3O/14:1;(2OH)

C41H73NO10 (739.5234)


   

HexCer 23:3;3O/12:1;(2OH)

HexCer 23:3;3O/12:1;(2OH)

C41H73NO10 (739.5234)


   

HexCer 19:3;3O/16:1;(2OH)

HexCer 19:3;3O/16:1;(2OH)

C41H73NO10 (739.5234)


   

HexCer 20:3;3O/15:1;(2OH)

HexCer 20:3;3O/15:1;(2OH)

C41H73NO10 (739.5234)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyhenicosanoylamino)docosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyhenicosanoylamino)docosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]heptadeca-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyhexacos-11-enoyl]amino]heptadeca-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxytetracos-11-enoyl]amino]nonadeca-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxytetracos-11-enoyl]amino]nonadeca-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxytricos-11-enoyl]amino]icosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxytricos-11-enoyl]amino]icosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxytetracosanoylamino)nonadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxytetracosanoylamino)nonadeca-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyoctadecanoylamino)pentacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyoctadecanoylamino)pentacosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyoctadec-11-enoyl]amino]pentacosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyoctadec-11-enoyl]amino]pentacosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxydocos-11-enoyl]amino]henicosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxydocos-11-enoyl]amino]henicosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyicosanoylamino)tricosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyicosanoylamino)tricosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxydocosanoylamino)henicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxydocosanoylamino)henicosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyhenicos-9-enoyl]amino]docosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyhenicos-9-enoyl]amino]docosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C42H78NO7P (739.5516)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxypentacosanoylamino)octadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxypentacosanoylamino)octadeca-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyhexacosanoylamino)heptadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyhexacosanoylamino)heptadeca-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]octadeca-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxypentacos-11-enoyl]amino]octadeca-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] nonanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] nonanoate

C42H78NO7P (739.5516)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxynonadec-9-enoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxynonadec-9-enoyl]amino]tetracosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyicos-11-enoyl]amino]tricosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(Z)-2-hydroxyicos-11-enoyl]amino]tricosa-4,8-diene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(E)-3-hydroxy-2-[[(10Z,12Z)-2-hydroxyoctadeca-10,12-dienoyl]amino]pentacos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(10Z,12Z)-2-hydroxyoctadeca-10,12-dienoyl]amino]pentacos-4-ene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]heptadec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]heptadec-4-ene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]nonadec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]nonadec-4-ene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyicosa-11,14-dienoyl]amino]tricos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyicosa-11,14-dienoyl]amino]tricos-4-ene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxytricosanoylamino)icosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxytricosanoylamino)icosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(E)-3-hydroxy-2-[[(14Z,16Z)-2-hydroxydocosa-14,16-dienoyl]amino]henicos-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(14Z,16Z)-2-hydroxydocosa-14,16-dienoyl]amino]henicos-4-ene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxynonadecanoylamino)tetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxynonadecanoylamino)tetracosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyheptadecanoylamino)hexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-(2-hydroxyheptadecanoylamino)hexacosa-4,8,12-triene-1-sulfonic acid

C43H81NO6S (739.5784)


   

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-hexanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hexanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] tridecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] tridecanoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] undecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] undecanoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H78NO7P (739.5516)


   

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonadeca-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonadeca-4,8-diene-1-sulfonic acid

C45H73NO5S (739.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H78NO7P (739.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]henicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]henicosa-4,8,12-triene-1-sulfonic acid

C45H73NO5S (739.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] henicosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] henicosanoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C42H78NO7P (739.5516)


   

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonadeca-4,8,12-triene-1-sulfonic acid

C45H73NO5S (739.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (Z)-henicos-11-enoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C42H78NO7P (739.5516)


   

(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytricosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytricosa-4,8,12-triene-1-sulfonic acid

C45H73NO5S (739.5209)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-decoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decoxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-dodecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-decanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-decanoyloxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

2-[4-[12-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

2-[4-[12-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

C46H77NO6 (739.5751)


   
   

HexCer 16:2;2O/21:0

HexCer 16:2;2O/21:0

C43H81NO8 (739.5962)


   

HexCer 14:2;2O/23:0

HexCer 14:2;2O/23:0

C43H81NO8 (739.5962)


   

HexCer 23:1;2O/14:1

HexCer 23:1;2O/14:1

C43H81NO8 (739.5962)


   

HexCer 23:2;2O/14:0

HexCer 23:2;2O/14:0

C43H81NO8 (739.5962)


   

HexCer 22:1;2O/15:1

HexCer 22:1;2O/15:1

C43H81NO8 (739.5962)


   

HexCer 24:2;2O/13:0

HexCer 24:2;2O/13:0

C43H81NO8 (739.5962)


   

HexCer 18:2;2O/19:0

HexCer 18:2;2O/19:0

C43H81NO8 (739.5962)


   

HexCer 25:2;2O/12:0

HexCer 25:2;2O/12:0

C43H81NO8 (739.5962)


   

HexCer 19:2;2O/18:0

HexCer 19:2;2O/18:0

C43H81NO8 (739.5962)


   

HexCer 15:2;2O/22:0

HexCer 15:2;2O/22:0

C43H81NO8 (739.5962)


   

HexCer 21:2;2O/16:0

HexCer 21:2;2O/16:0

C43H81NO8 (739.5962)


   

HexCer 17:2;2O/20:0

HexCer 17:2;2O/20:0

C43H81NO8 (739.5962)


   

HexCer 17:0;2O/20:2

HexCer 17:0;2O/20:2

C43H81NO8 (739.5962)


   

HexCer 18:1;2O/19:1

HexCer 18:1;2O/19:1

C43H81NO8 (739.5962)


   

HexCer 20:2;2O/17:0

HexCer 20:2;2O/17:0

C43H81NO8 (739.5962)


   

HexCer 17:1;2O/20:1

HexCer 17:1;2O/20:1

C43H81NO8 (739.5962)


   

HexCer 22:2;2O/15:0

HexCer 22:2;2O/15:0

C43H81NO8 (739.5962)


   

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

HexCer 19:2;3O/16:2;(2OH)

HexCer 19:2;3O/16:2;(2OH)

C41H73NO10 (739.5234)


   

HexCer 17:2;3O/18:2;(2OH)

HexCer 17:2;3O/18:2;(2OH)

C41H73NO10 (739.5234)


   

HexCer 15:2;3O/20:2;(2OH)

HexCer 15:2;3O/20:2;(2OH)

C41H73NO10 (739.5234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H78NO7P (739.5516)


   

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] pentadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] pentadecanoate

C42H78NO7P (739.5516)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] heptadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] heptadecanoate

C42H78NO7P (739.5516)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] nonadecanoate

C42H78NO7P (739.5516)


   

[3-hexadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-hexadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hexadecanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate

C42H78NO7P (739.5516)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C42H78NO7P (739.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C42H78NO7P (739.5516)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

(4Z,7Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosan-2-yl]hexadeca-4,7-dienamide

(4Z,7Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosan-2-yl]hexadeca-4,7-dienamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]hexadec-7-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]hexadec-7-enamide

C43H81NO8 (739.5962)


   

(10Z,12Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]octadeca-10,12-dienamide

(10Z,12Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]octadeca-10,12-dienamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]docos-11-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]docos-11-enamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracos-4-en-2-yl]tridec-8-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetracos-4-en-2-yl]tridec-8-enamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]octadec-11-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]octadec-11-enamide

C43H81NO8 (739.5962)


   

(14Z,16Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadecan-2-yl]docosa-14,16-dienamide

(14Z,16Z)-N-[3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadecan-2-yl]docosa-14,16-dienamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadec-4-en-2-yl]henicos-9-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadec-4-en-2-yl]henicos-9-enamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacos-4-en-2-yl]dodec-5-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentacos-4-en-2-yl]dodec-5-enamide

C43H81NO8 (739.5962)


   

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradec-4-en-2-yl]tricos-11-enamide

(Z)-N-[(E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradec-4-en-2-yl]tricos-11-enamide

C43H81NO8 (739.5962)


   

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-8-en-2-yl]docos-13-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-8-en-2-yl]docos-13-enamide

C43H81NO8 (739.5962)


   

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,6-dien-2-yl]henicosanamide

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,6-dien-2-yl]henicosanamide

C43H81NO8 (739.5962)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8-dien-2-yl]henicosanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexadeca-4,8-dien-2-yl]henicosanamide

C43H81NO8 (739.5962)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]tricosanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,8-dien-2-yl]tricosanamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]octadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-4-en-2-yl]octadec-9-enamide

C43H81NO8 (739.5962)


   

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]nonadecanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,8-dien-2-yl]nonadecanamide

C43H81NO8 (739.5962)


   

4-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,6-dien-2-yl]tricosanamide

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxytetradeca-4,6-dien-2-yl]tricosanamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-8-en-2-yl]heptadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-8-en-2-yl]heptadec-9-enamide

C43H81NO8 (739.5962)


   

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-4-en-2-yl]heptadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicos-4-en-2-yl]heptadec-9-enamide

C43H81NO8 (739.5962)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]octadecanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8-dien-2-yl]octadecanamide

C43H81NO8 (739.5962)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

2-[hydroxy-[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8-dien-2-yl]docosanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8-dien-2-yl]docosanamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-8-en-2-yl]icos-11-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-8-en-2-yl]icos-11-enamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]hexadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-4-en-2-yl]hexadec-9-enamide

C43H81NO8 (739.5962)


   

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8-dien-2-yl]hexadecanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8-dien-2-yl]hexadecanamide

C43H81NO8 (739.5962)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,6-dien-2-yl]docosanamide

N-[(2S,3R,4E,6E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,6-dien-2-yl]docosanamide

C43H81NO8 (739.5962)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadeca-4,8-dien-2-yl]icosanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadeca-4,8-dien-2-yl]icosanamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]docos-13-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadec-4-en-2-yl]docos-13-enamide

C43H81NO8 (739.5962)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]heptadecanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyicosa-4,8-dien-2-yl]heptadecanamide

C43H81NO8 (739.5962)


   

(9E,12E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]octadeca-9,12-dienamide

(9E,12E)-N-[(2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadecan-2-yl]octadeca-9,12-dienamide

C43H81NO8 (739.5962)


   

[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO7P (739.5516)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-4-en-2-yl]icos-11-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyheptadec-4-en-2-yl]icos-11-enamide

C43H81NO8 (739.5962)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-8-en-2-yl]hexadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicos-8-en-2-yl]hexadec-9-enamide

C43H81NO8 (739.5962)


   

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-8-en-2-yl]octadec-9-enamide

(E)-N-[(E,2S,3R)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadec-8-en-2-yl]octadec-9-enamide

C43H81NO8 (739.5962)


   

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosa-4,8-dien-2-yl]pentadecanamide

N-[(2S,3R,4E,8E)-3-hydroxy-1-[(2R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxydocosa-4,8-dien-2-yl]pentadecanamide

C43H81NO8 (739.5962)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

N-[(2S,3R,4E,14E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,14-dien-2-yl]nonadecanamide

N-[(2S,3R,4E,14E)-3-hydroxy-1-[(2S,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoctadeca-4,14-dien-2-yl]nonadecanamide

C43H81NO8 (739.5962)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

4-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H73NO7 (739.5387)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]docosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]tricosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]octadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxypentacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxypentacosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-docos-11-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-docos-11-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tricos-11-enoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tricos-11-enoyl]amino]tetradeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-henicos-9-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-henicos-9-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]tetracosa-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tridecoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E,12E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhenicosa-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(13Z,16Z)-tetracosa-13,16-dienoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadecoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadec-8-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[[3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O7P+ (739.539)


   

2-[[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadecoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

2-[[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicos-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O6P+ (739.5754)


   

PC(P-16:0/18:3(9Z,12Z,15Z))

PC(P-16:0/18:3(9Z,12Z,15Z))

C42H78NO7P (739.5516)


   

PC(P-16:0/18:3(6Z,9Z,12Z))

PC(P-16:0/18:3(6Z,9Z,12Z))

C42H78NO7P (739.5516)


   

PC(18:3(6Z,9Z,12Z)/P-16:0)

PC(18:3(6Z,9Z,12Z)/P-16:0)

C42H78NO7P (739.5516)


   

PC(18:3(9Z,12Z,15Z)/P-16:0)

PC(18:3(9Z,12Z,15Z)/P-16:0)

C42H78NO7P (739.5516)


   

phosphatidylcholine (P-16:0/18:3)

phosphatidylcholine (P-16:0/18:3)

C42H78NO7P (739.5516)


A phosphatidylcholine P-34:3 in which the 1-alk-1-enyl group contains 16 carbons and no additional double bonds while the 2-acyl group contains 18 carbons and 3 double bonds.

   

phosphatidylcholine O-34:4

phosphatidylcholine O-34:4

C42H78NO7P (739.5516)


A glycerophosphocholine that is an alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 34 carbons and 4 double bonds.

   

MePC(33:4)

MePC(20:4(1)_13:0)

C42H78NO7P (739.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(36:3)

Hex1Cer(t18:1_18:2)

C42H77NO9 (739.5598)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   

PC P-14:0/20:3 or PC O-14:1/20:3

PC P-14:0/20:3 or PC O-14:1/20:3

C42H78NO7P (739.5516)


   
   

PC P-16:0/18:3 or PC O-16:1/18:3

PC P-16:0/18:3 or PC O-16:1/18:3

C42H78NO7P (739.5516)


   
   

PC P-16:1/18:2 or PC O-16:2/18:2

PC P-16:1/18:2 or PC O-16:2/18:2

C42H78NO7P (739.5516)


   
   

PC P-34:3 or PC O-34:4

PC P-34:3 or PC O-34:4

C42H78NO7P (739.5516)


   
   
   
   
   
   
   
   

PE P-16:0/21:3 or PE O-16:1/21:3

PE P-16:0/21:3 or PE O-16:1/21:3

C42H78NO7P (739.5516)


   
   

PE P-17:0/20:3 or PE O-17:1/20:3

PE P-17:0/20:3 or PE O-17:1/20:3

C42H78NO7P (739.5516)


   
   

PE P-17:1/20:2 or PE O-17:2/20:2

PE P-17:1/20:2 or PE O-17:2/20:2

C42H78NO7P (739.5516)


   
   

PE P-20:1/17:2 or PE O-20:2/17:2

PE P-20:1/17:2 or PE O-20:2/17:2

C42H78NO7P (739.5516)


   
   

PE P-37:3 or PE O-37:4

PE P-37:3 or PE O-37:4

C42H78NO7P (739.5516)


   

CerP 17:1;O2/26:2

CerP 17:1;O2/26:2

C43H82NO6P (739.5879)


   

CerP 17:2;O2/26:1

CerP 17:2;O2/26:1

C43H82NO6P (739.5879)


   

CerP 19:2;O2/24:1

CerP 19:2;O2/24:1

C43H82NO6P (739.5879)


   

CerP 21:1;O2/22:2

CerP 21:1;O2/22:2

C43H82NO6P (739.5879)


   

CerP 21:2;O2/22:1

CerP 21:2;O2/22:1

C43H82NO6P (739.5879)


   
   

GalCer 14:2;O2/22:1;O

GalCer 14:2;O2/22:1;O

C42H77NO9 (739.5598)


   

GalCer 14:2;O2/23:0

GalCer 14:2;O2/23:0

C43H81NO8 (739.5962)


   

GalCer 15:0;O2/22:2

GalCer 15:0;O2/22:2

C43H81NO8 (739.5962)


   

GalCer 15:1;O2/22:1

GalCer 15:1;O2/22:1

C43H81NO8 (739.5962)


   

GalCer 15:2;O2/22:0

GalCer 15:2;O2/22:0

C43H81NO8 (739.5962)


   

GalCer 16:0;O3/20:3

GalCer 16:0;O3/20:3

C42H77NO9 (739.5598)


   

GalCer 16:2;O2/20:1;O

GalCer 16:2;O2/20:1;O

C42H77NO9 (739.5598)


   

GalCer 16:2;O2/21:0

GalCer 16:2;O2/21:0

C43H81NO8 (739.5962)


   

GalCer 17:0;O2/20:2

GalCer 17:0;O2/20:2

C43H81NO8 (739.5962)


   

GalCer 17:1;O2/20:1

GalCer 17:1;O2/20:1

C43H81NO8 (739.5962)


   

GalCer 17:2;O2/20:0

GalCer 17:2;O2/20:0

C43H81NO8 (739.5962)


   

GalCer 18:0;O3/18:3

GalCer 18:0;O3/18:3

C42H77NO9 (739.5598)


   

GalCer 18:2;O2/18:1;O

GalCer 18:2;O2/18:1;O

C42H77NO9 (739.5598)


   

GalCer 18:2;O2/19:0

GalCer 18:2;O2/19:0

C43H81NO8 (739.5962)


   

GalCer 19:0;O2/18:2

GalCer 19:0;O2/18:2

C43H81NO8 (739.5962)


   

GalCer 19:1;O2/18:1

GalCer 19:1;O2/18:1

C43H81NO8 (739.5962)


   

GalCer 19:2;O2/18:0

GalCer 19:2;O2/18:0

C43H81NO8 (739.5962)


   

GalCer 20:0;O2/17:2

GalCer 20:0;O2/17:2

C43H81NO8 (739.5962)


   

GalCer 20:1;O2/17:1

GalCer 20:1;O2/17:1

C43H81NO8 (739.5962)


   

GalCer 20:2;O2/17:0

GalCer 20:2;O2/17:0

C43H81NO8 (739.5962)


   

GalCer 21:1;O2/16:1

GalCer 21:1;O2/16:1

C43H81NO8 (739.5962)


   

GalCer 21:2;O2/16:0

GalCer 21:2;O2/16:0

C43H81NO8 (739.5962)


   

GalCer 22:1;O2/15:1

GalCer 22:1;O2/15:1

C43H81NO8 (739.5962)


   

GalCer 22:2;O2/15:0

GalCer 22:2;O2/15:0

C43H81NO8 (739.5962)


   

GalCer 36:3;O2;O

GalCer 36:3;O2;O

C42H77NO9 (739.5598)


   

GalCer 36:3;O3

GalCer 36:3;O3

C42H77NO9 (739.5598)


   

GalCer 37:2;O2

GalCer 37:2;O2

C43H81NO8 (739.5962)


   

GlcCer 14:2;O2/22:1;O

GlcCer 14:2;O2/22:1;O

C42H77NO9 (739.5598)


   

GlcCer 14:2;O2/23:0

GlcCer 14:2;O2/23:0

C43H81NO8 (739.5962)


   

GlcCer 15:0;O2/22:2

GlcCer 15:0;O2/22:2

C43H81NO8 (739.5962)


   

GlcCer 15:1;O2/22:1

GlcCer 15:1;O2/22:1

C43H81NO8 (739.5962)


   

GlcCer 15:2;O2/22:0

GlcCer 15:2;O2/22:0

C43H81NO8 (739.5962)


   

GlcCer 15:2;O2(4E,6E)/22:0

GlcCer 15:2;O2(4E,6E)/22:0

C43H81NO8 (739.5962)


   

GlcCer 16:0;O3/20:3

GlcCer 16:0;O3/20:3

C42H77NO9 (739.5598)


   

GlcCer 16:2;O2/20:1;O

GlcCer 16:2;O2/20:1;O

C42H77NO9 (739.5598)


   

GlcCer 16:2;O2/21:0

GlcCer 16:2;O2/21:0

C43H81NO8 (739.5962)


   

GlcCer 17:0;O2/20:2

GlcCer 17:0;O2/20:2

C43H81NO8 (739.5962)


   

GlcCer 17:1;O2/20:1

GlcCer 17:1;O2/20:1

C43H81NO8 (739.5962)


   

GlcCer 17:2;O2/20:0

GlcCer 17:2;O2/20:0

C43H81NO8 (739.5962)


   

GlcCer 18:0;O3/18:3

GlcCer 18:0;O3/18:3

C42H77NO9 (739.5598)


   

GlcCer 18:2;O2/18:1;O

GlcCer 18:2;O2/18:1;O

C42H77NO9 (739.5598)


   

GlcCer 18:2;O2/19:0

GlcCer 18:2;O2/19:0

C43H81NO8 (739.5962)


   

GlcCer 19:0;O2/18:2

GlcCer 19:0;O2/18:2

C43H81NO8 (739.5962)


   

GlcCer 19:1;O2/18:1

GlcCer 19:1;O2/18:1

C43H81NO8 (739.5962)


   

GlcCer 19:2;O2/18:0

GlcCer 19:2;O2/18:0

C43H81NO8 (739.5962)


   

GlcCer 20:0;O2/17:2

GlcCer 20:0;O2/17:2

C43H81NO8 (739.5962)


   

GlcCer 20:1;O2/17:1

GlcCer 20:1;O2/17:1

C43H81NO8 (739.5962)


   

GlcCer 20:2;O2/17:0

GlcCer 20:2;O2/17:0

C43H81NO8 (739.5962)


   

GlcCer 21:1;O2/16:1

GlcCer 21:1;O2/16:1

C43H81NO8 (739.5962)


   

GlcCer 21:2;O2/16:0

GlcCer 21:2;O2/16:0

C43H81NO8 (739.5962)


   

GlcCer 22:1;O2/15:1

GlcCer 22:1;O2/15:1

C43H81NO8 (739.5962)


   

GlcCer 22:2;O2/15:0

GlcCer 22:2;O2/15:0

C43H81NO8 (739.5962)


   

GlcCer 36:3;O2;O

GlcCer 36:3;O2;O

C42H77NO9 (739.5598)


   

GlcCer 36:3;O3

GlcCer 36:3;O3

C42H77NO9 (739.5598)


   

GlcCer 37:2;O2

GlcCer 37:2;O2

C43H81NO8 (739.5962)


   

HexCer 14:2;O2/22:1;2OH

HexCer 14:2;O2/22:1;2OH

C42H77NO9 (739.5598)


   

HexCer 14:2;O2/22:1;3OH

HexCer 14:2;O2/22:1;3OH

C42H77NO9 (739.5598)


   

HexCer 14:2;O2/22:1;O

HexCer 14:2;O2/22:1;O

C42H77NO9 (739.5598)


   

HexCer 14:2;O2/23:0

HexCer 14:2;O2/23:0

C43H81NO8 (739.5962)


   

HexCer 15:0;O2/22:2

HexCer 15:0;O2/22:2

C43H81NO8 (739.5962)


   

HexCer 15:1;O2/22:1

HexCer 15:1;O2/22:1

C43H81NO8 (739.5962)


   

HexCer 15:2;O2/22:0

HexCer 15:2;O2/22:0

C43H81NO8 (739.5962)


   

HexCer 16:0;O3/20:3

HexCer 16:0;O3/20:3

C42H77NO9 (739.5598)


   

HexCer 16:2;O2/20:1;2OH

HexCer 16:2;O2/20:1;2OH

C42H77NO9 (739.5598)


   

HexCer 16:2;O2/20:1;3OH

HexCer 16:2;O2/20:1;3OH

C42H77NO9 (739.5598)


   

HexCer 16:2;O2/20:1;O

HexCer 16:2;O2/20:1;O

C42H77NO9 (739.5598)


   

HexCer 16:2;O2/21:0

HexCer 16:2;O2/21:0

C43H81NO8 (739.5962)


   

HexCer 17:0;O2/20:2

HexCer 17:0;O2/20:2

C43H81NO8 (739.5962)


   

HexCer 17:1;O2/20:1

HexCer 17:1;O2/20:1

C43H81NO8 (739.5962)


   

HexCer 17:2;O2/20:0

HexCer 17:2;O2/20:0

C43H81NO8 (739.5962)


   

HexCer 18:0;O3/18:3

HexCer 18:0;O3/18:3

C42H77NO9 (739.5598)


   

HexCer 18:2;O2/18:1;2OH

HexCer 18:2;O2/18:1;2OH

C42H77NO9 (739.5598)


   

HexCer 18:2;O2/18:1;3OH

HexCer 18:2;O2/18:1;3OH

C42H77NO9 (739.5598)


   

HexCer 18:2;O2/18:1;O

HexCer 18:2;O2/18:1;O

C42H77NO9 (739.5598)


   

HexCer 18:2;O2/19:0

HexCer 18:2;O2/19:0

C43H81NO8 (739.5962)


   

HexCer 19:0;O2/18:2

HexCer 19:0;O2/18:2

C43H81NO8 (739.5962)


   

HexCer 19:1;O2/18:1

HexCer 19:1;O2/18:1

C43H81NO8 (739.5962)


   

HexCer 19:2;O2/18:0

HexCer 19:2;O2/18:0

C43H81NO8 (739.5962)


   

HexCer 20:0;O2/17:2

HexCer 20:0;O2/17:2

C43H81NO8 (739.5962)


   

HexCer 20:1;O2/17:1

HexCer 20:1;O2/17:1

C43H81NO8 (739.5962)


   

HexCer 20:2;O2/17:0

HexCer 20:2;O2/17:0

C43H81NO8 (739.5962)


   

HexCer 21:1;O2/16:1

HexCer 21:1;O2/16:1

C43H81NO8 (739.5962)


   

HexCer 21:2;O2/16:0

HexCer 21:2;O2/16:0

C43H81NO8 (739.5962)


   

HexCer 22:1;O2/15:1

HexCer 22:1;O2/15:1

C43H81NO8 (739.5962)


   

HexCer 22:2;O2/15:0

HexCer 22:2;O2/15:0

C43H81NO8 (739.5962)


   

HexCer 36:3;O2;O

HexCer 36:3;O2;O

C42H77NO9 (739.5598)


   
   

(2r)-2-hydroxy-n-[(2s,3r,4e,8e,10e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl]heptadecanimidic acid

(2r)-2-hydroxy-n-[(2s,3r,4e,8e,10e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl]heptadecanimidic acid

C42H77NO9 (739.5598)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl)heptadecanimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8,10-trien-2-yl)heptadecanimidic acid

C42H77NO9 (739.5598)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl)octadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl)octadec-3-enimidic acid

C42H77NO9 (739.5598)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C42H77NO9 (739.5598)


   

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)octadec-3-enimidic acid

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)octadec-3-enimidic acid

C42H77NO9 (739.5598)


   

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8z)-3-hydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

(2r,3e)-2-hydroxy-n-[(2s,3r,4e,8z)-3-hydroxy-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]octadec-3-enimidic acid

C42H77NO9 (739.5598)