Exact Mass: 739.450653

Exact Mass Matches: 739.450653

Found 206 metabolites which its exact mass value is equals to given mass value 739.450653, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Lycoperoside D

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H65NO12 (739.450653)


Alkaloid from Lycopersicon esculentum (tomato). Lycoperoside D is found in garden tomato and garden tomato (variety). Lycoperoside D is found in garden tomato. Lycoperoside D is an alkaloid from Lycopersicon esculentum (tomato

   

PE(14:1(9Z)/PGJ2)

(2-aminoethoxy)[(2R)-2-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H66NO10P (739.4424106)


PE(14:1(9Z)/PGJ2) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(14:1(9Z)/PGJ2), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(PGJ2/14:1(9Z))

(2-aminoethoxy)[(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H66NO10P (739.4424106)


PE(PGJ2/14:1(9Z)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(PGJ2/14:1(9Z)), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-aminoethoxy)[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

(2-aminoethoxy)[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-aminoethoxy)[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

(2-aminoethoxy)[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-aminoethoxy)[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

(2-aminoethoxy)[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H70NO9P (739.478794)


PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   
   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]-3-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidine]-3-oloxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H65NO12 (739.450653)


   

2-acetylamino-3-methylpentanoic acid (5-benzyl-14,17-di-sec-butyl-4,7,13,16,19-pentaoxo-eicosahydro-3a,6,12,15,18-pentaaza-cyclopentacyclooctadecen-8-yl)amide|cyclo-[Ndelta-L-Orn(N-N-acetyl-L-Ile)-D-Phe-L-Pro-L-Ile-L-Ile]|pseudacyclin A

2-acetylamino-3-methylpentanoic acid (5-benzyl-14,17-di-sec-butyl-4,7,13,16,19-pentaoxo-eicosahydro-3a,6,12,15,18-pentaaza-cyclopentacyclooctadecen-8-yl)amide|cyclo-[Ndelta-L-Orn(N-N-acetyl-L-Ile)-D-Phe-L-Pro-L-Ile-L-Ile]|pseudacyclin A

C39H61N7O7 (739.4632236)


   
   

C39H65NO12_15-Hydroxyspirosolan-3-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

NCGC00347420-02_C39H65NO12_15-Hydroxyspirosolan-3-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

C39H65NO12 (739.450653)


   

PS(13:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-tridecanoyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphoserine

C39H66NO10P (739.4424106)


   

PS(15:1(9Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z-pentadecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C39H66NO10P (739.4424106)


   

PS(18:4(6Z,9Z,12Z,15Z)/15:1(9Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C39H66NO10P (739.4424106)


   

PS(20:5(5Z,8Z,11Z,14Z,17Z)/13:0)

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-tridecanoyl-glycero-3-phosphoserine

C39H66NO10P (739.4424106)


   

PS(P-16:0/18:4(6Z,9Z,12Z,15Z))

1-(1Z-hexadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C40H70NO9P (739.478794)


   

g-Tomatine

2-{[4,5-dihydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane-6,2-piperidine]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H65NO12 (739.450653)


   

PS 33:5

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C39H66NO10P (739.4424106)


   

PS O-34:5

1-(1Z-hexadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphoserine

C40H70NO9P (739.478794)


   

Difelikefalin acetate

Difelikefalin acetate

C38H57N7O8 (739.4268402)


   

Ac-DL-xiIle-DL-Orn(1)-DL-Phe-DL-Pro-DL-xiIle-DL-xiIle-(1)

Ac-DL-xiIle-DL-Orn(1)-DL-Phe-DL-Pro-DL-xiIle-DL-xiIle-(1)

C39H61N7O7 (739.4632236)


   
   

[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] 2,4,6-trimethyltetracosanoate

[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] 2,4,6-trimethyltetracosanoate

C37H66N5O8P (739.4648766)


   
   
   

PE(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PE(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C40H70NO9P (739.478794)


   

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

PE(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

C40H70NO9P (739.478794)


   

PE(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PE(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C40H70NO9P (739.478794)


   

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

PE(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

C40H70NO9P (739.478794)


   

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C40H70NO9P (739.478794)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

C40H70NO9P (739.478794)


   

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PE(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C40H70NO9P (739.478794)


   

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

PE(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

C40H70NO9P (739.478794)


   

PE(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PE(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C40H70NO9P (739.478794)


   

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

PE(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

C40H70NO9P (739.478794)


   

PE(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PE(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C40H70NO9P (739.478794)


   

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

PE(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

C40H70NO9P (739.478794)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI-Cer 15:1;2O/15:0;O

PI-Cer 15:1;2O/15:0;O

C36H70NO12P (739.463539)


   

PI-Cer 16:1;2O/14:0;O

PI-Cer 16:1;2O/14:0;O

C36H70NO12P (739.463539)


   

PI-Cer 12:1;2O/18:0;O

PI-Cer 12:1;2O/18:0;O

C36H70NO12P (739.463539)


   

PI-Cer 14:1;2O/16:0;O

PI-Cer 14:1;2O/16:0;O

C36H70NO12P (739.463539)


   

PI-Cer 16:0;2O/14:1;O

PI-Cer 16:0;2O/14:1;O

C36H70NO12P (739.463539)


   

PI-Cer 18:0;2O/12:1;O

PI-Cer 18:0;2O/12:1;O

C36H70NO12P (739.463539)


   

PI-Cer 15:0;2O/15:1;O

PI-Cer 15:0;2O/15:1;O

C36H70NO12P (739.463539)


   

PI-Cer 17:1;2O/13:0;O

PI-Cer 17:1;2O/13:0;O

C36H70NO12P (739.463539)


   

PI-Cer 18:1;2O/12:0;O

PI-Cer 18:1;2O/12:0;O

C36H70NO12P (739.463539)


   

PI-Cer 13:1;2O/17:0;O

PI-Cer 13:1;2O/17:0;O

C36H70NO12P (739.463539)


   

PI-Cer 12:0;2O/18:1;O

PI-Cer 12:0;2O/18:1;O

C36H70NO12P (739.463539)


   

PI-Cer 14:0;2O/16:1;O

PI-Cer 14:0;2O/16:1;O

C36H70NO12P (739.463539)


   

PI-Cer 17:0;2O/13:1;O

PI-Cer 17:0;2O/13:1;O

C36H70NO12P (739.463539)


   

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-decanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-decanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-hexadec-9-enoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-decoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decoxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-hexadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexadecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[[3-hexadecoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexadecoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C40H70NO9P (739.478794)


   

2-[4-[10,13-dimethyl-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[10,13-dimethyl-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C44H69NO6S (739.4845333999999)


   
   
   
   
   
   
   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[3-heptadecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-heptadecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-2-[(4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[3-[(E)-heptadec-7-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(E)-heptadec-7-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   

(2S)-2-amino-3-[[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H66NO10P (739.4424106)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-14:0/20:4 or PS O-14:1/20:4

PS P-14:0/20:4 or PS O-14:1/20:4

C40H70NO9P (739.478794)


   
   

PS P-16:0/18:4 or PS O-16:1/18:4

PS P-16:0/18:4 or PS O-16:1/18:4

C40H70NO9P (739.478794)


   
   

PS P-16:1/18:3 or PS O-16:2/18:3

PS P-16:1/18:3 or PS O-16:2/18:3

C40H70NO9P (739.478794)


   
   

PS P-34:4 or PS O-34:5

PS P-34:4 or PS O-34:5

C40H70NO9P (739.478794)