Exact Mass: 736.5489046

Exact Mass Matches: 736.5489046

Found 500 metabolites which its exact mass value is equals to given mass value 736.5489046, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PG(a-13:0/i-20:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methyldodecanoyloxy)propan-2-yl] 18-methylnonadecanoate

C39H77O10P (736.5254072)


PG(a-13:0/i-20:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-12:0/a-21:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 18-methylicosanoate

C39H77O10P (736.5254072)


PG(i-12:0/a-21:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/a-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-12:0/i-21:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 19-methylicosanoate

C39H77O10P (736.5254072)


PG(i-12:0/i-21:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/i-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

PG(i-13:0/i-20:0)

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-(11-methyldodecanoyloxy)propan-2-yl] 18-methylnonadecanoate

C39H77O10P (736.5254072)


PG(i-13:0/i-20:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/i-20:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

SM(d16:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:1/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:1/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R,4E)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]hexadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) consists of a sphingosine backbone and a 14,15-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) consists of a sphingosine backbone and a 11,12-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9)) consists of a sphingosine backbone and a 8,9--epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanamido)hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6)) consists of a sphingosine backbone and a 5,6-epoxyeicosatrienoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) consists of a sphingosine backbone and a 20-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) consists of a sphingosine backbone and a 5-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) consists of a sphingosine backbone and a 19-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) consists of a sphingosine backbone and a 18-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) consists of a sphingosine backbone and a 17-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) consists of a sphingosine backbone and a 16-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) consists of a sphingosine backbone and a 15-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) consists of a sphingosine backbone and a 12-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) consists of a sphingosine backbone and a 11-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H73N2O7P (736.5155118)


SM(d16:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) consists of a sphingosine backbone and a 9-Hydroxyeicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

DG(21:0/PGF2alpha/0:0)

(2S)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/PGF2alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(21:0/PGF2alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/21:0/0:0)

(2S)-1-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF2alpha/21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(21:0/0:0/PGF2alpha)

(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/0:0/PGF2alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/0:0/21:0)

(2S)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/0:0/21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(21:0/PGE1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/PGE1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(21:0/PGE1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propan-2-yl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE1/21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(21:0/0:0/PGE1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/0:0/PGE1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/0:0/21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/0:0/21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(21:0/PGD1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/PGD1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(21:0/PGD1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propan-2-yl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD1/21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(21:0/0:0/PGD1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(21:0/0:0/PGD1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/0:0/21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl henicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/0:0/21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/PGF2alpha/0:0)

(2S)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/PGF2alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-21:0/PGF2alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/a-21:0/0:0)

(2S)-1-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/a-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF2alpha/a-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/0:0/PGF2alpha)

(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/0:0/PGF2alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/0:0/a-21:0)

(2S)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/0:0/a-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/PGE1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/PGE1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-21:0/PGE1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/a-21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/a-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE1/a-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/0:0/PGE1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/0:0/PGE1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/0:0/a-21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/0:0/a-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/PGD1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/PGD1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-21:0/PGD1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/a-21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/a-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD1/a-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-21:0/0:0/PGD1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(a-21:0/0:0/PGD1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/0:0/a-21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 18-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/0:0/a-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/PGF2alpha/0:0)

(2S)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/PGF2alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-21:0/PGF2alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/i-21:0/0:0)

(2S)-1-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/i-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF2alpha/i-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/0:0/PGF2alpha)

(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/0:0/PGF2alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF2alpha/0:0/i-21:0)

(2S)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-hydroxypropyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGF2alpha/0:0/i-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/PGE1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/PGE1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-21:0/PGE1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/i-21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/i-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE1/i-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/0:0/PGE1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/0:0/PGE1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE1/0:0/i-21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGE1/0:0/i-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/PGD1/0:0)

(2S)-3-Hydroxy-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/PGD1/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-21:0/PGD1/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/i-21:0/0:0)

(2S)-1-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propan-2-yl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/i-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD1/i-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-21:0/0:0/PGD1)

(2R)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(i-21:0/0:0/PGD1) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD1/0:0/i-21:0)

(2S)-2-Hydroxy-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propyl 19-methylicosanoic acid

C44H80O8 (736.5852880000001)


DG(PGD1/0:0/i-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   
   

4,6,8,10,12,14,16,18,20,22,24-Undecamethoxy-1-nonacosene

4,6,8,10,12,14,16,18,20,22,24-Undecamethoxy-1-nonacosene

C40H80O11 (736.5700330000001)


   
   

oceanalin A

oceanalin A

C41H72N2O9 (736.5237542000001)


A glycosphingolipid isolated from a marine sponge Oceanapia sp. that exhibits antifungal activity against fluconazole-resistant yeast Candida glabrata with an MIC value of 30 mug/ml.

   

PG(12:0/21:0)

1-dodecanoyl-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(14:0/19:0)

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(17:0/16:0)

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(18:0/15:0)

1-octadecanoyl-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(21:0/12:0)

1-heneicosanoyl-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(20:0/13:0)

1-eicosanoyl-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(19:0/14:0)

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(16:0/17:0)

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(15:0/18:0)

1-pentadecanoyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(13:0/20:0)

1-tridecanoyl-2-eicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG(O-20:0/14:0)

1-eicosyl-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

PG(O-18:0/16:0)

1-octadecyl-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

PG(O-16:0/18:0)

1-hexadecyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

PA(O-20:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-eicosyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C43H77O7P (736.5406622)


   

PA(P-18:0/22:4(7Z,10Z,13Z,16Z))

1-(1Z-octadecenyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C43H77O7P (736.5406622)


   

PA(P-20:0/20:4(5Z,8Z,11Z,14Z))

1-(1Z-eicosenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C43H77O7P (736.5406622)


   

MPM C34

(4S,8S,12S,16S,20S-Pentamethylnonacosanyl)-beta-D-mannosyl phosphate

C40H81O9P (736.5617906)


   

PG 33:0

1-pentadecanoyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H77O10P (736.5254072)


   

PG O-34:0

1-hexadecyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

PA O-40:5

1-(1Z-octadecenyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C43H77O7P (736.5406622)


   

Loroxanthin decenoate

(3R,3R,6R)-19-Dec-2-enoyloxy-beta,epsilon-carotene-3,3-diol

C50H72O4 (736.5430312)


   

II,III-tetrahydro-omega-(2,6,6-trimethylcyclohex-2-enylmethyl)2,3-epoxymenaquinone-6

(2E,14E,18E,22E)-2-[3,7,11,15,19,23-hexamethyl-25-(2,6,6-trimethyl-cyclohex-2-enyl)pentacosa-2,14,18,22-tetraenyl]-3-methyl-2,3-dihydro-2,3-epoxy-1,4-naphthoquinone

C51H76O3 (736.5794146)


   

[(4S,8S,12S,16S,20S)-4,8,12,16,20-pentamethylnonacosyl] [(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] hydrogen phosphate

[(4S,8S,12S,16S,20S)-4,8,12,16,20-pentamethylnonacosyl] [(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] hydrogen phosphate

C40H81O9P (736.5617906)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

SM(d16:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d16:1/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C41H73N2O7P (736.5155118)


   

SM(d16:1/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d16:1/20:4(6E,8Z,11Z,14Z)+=O(5))

C41H73N2O7P (736.5155118)


   

SM(d16:1/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d16:1/20:4(5Z,8Z,11Z,13E)+=O(15))

C41H73N2O7P (736.5155118)


   

SM(d16:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d16:1/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C41H73N2O7P (736.5155118)


   

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C41H73N2O7P (736.5155118)


   

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d16:1/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

SM(d16:2(4E,8Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

SM(d16:2(4E,8Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

SM(d16:2(4E,8Z)/20:3(5Z,11Z,14Z)-O(8,9))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

SM(d16:2(4E,8Z)/20:3(8Z,11Z,14Z)-O(5,6))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

SM(d16:2(4E,8Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C41H73N2O7P (736.5155118)


   

SM(d16:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

SM(d16:2(4E,8Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C41H73N2O7P (736.5155118)


   

1,2-dihexadecyl-sn-glycero-3-phospho{N-[2-(aminooxy)acetamido]ethanolamine}

1,2-dihexadecyl-sn-glycero-3-phospho{N-[2-(aminooxy)acetamido]ethanolamine}

C39H81N2O8P (736.5730236)


   

N-(2-hydroxyheptadecanoyl)-4-hydroxy-15-methylhexadecasphinganine-1-phosphocholine

N-(2-hydroxyheptadecanoyl)-4-hydroxy-15-methylhexadecasphinganine-1-phosphocholine

C39H81N2O8P (736.5730236)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] heptadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] heptadecanoate

C39H77O10P (736.5254072)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] tetradecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] tetradecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] hexadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] hexadecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] octadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] octadecanoate

C40H81O9P (736.5617906)


   

[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] dodecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] dodecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] docosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] docosanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] heptadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] heptadecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] tridecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] tridecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] tricosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] tricosanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] nonadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] nonadecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] pentadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] pentadecanoate

C40H81O9P (736.5617906)


   

[1-Decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tetracosanoate

[1-Decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tetracosanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] decanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] decanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] undecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] undecanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] henicosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] henicosanoate

C40H81O9P (736.5617906)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] icosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] icosanoate

C40H81O9P (736.5617906)


   

[(4E,8E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicos-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

2,3-di(octanoyloxy)propyl (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

2,3-di(octanoyloxy)propyl (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C47H76O6 (736.5641596)


   

2,3-di(nonanoyloxy)propyl (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

2,3-di(nonanoyloxy)propyl (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C47H76O6 (736.5641596)


   

[3-nonanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-nonanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H76O6 (736.5641596)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C47H76O6 (736.5641596)


   

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C47H76O6 (736.5641596)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-nonanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H76O6 (736.5641596)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C47H76O6 (736.5641596)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H76O6 (736.5641596)


   

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H76O6 (736.5641596)


   

[3-octanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-octanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H76O6 (736.5641596)


   

(2-decanoyloxy-3-octanoyloxypropyl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

(2-decanoyloxy-3-octanoyloxypropyl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C47H76O6 (736.5641596)


   

[3-decanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-decanoyloxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H76O6 (736.5641596)


   

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H76O6 (736.5641596)


   

2,3-bis[[(Z)-tridec-9-enoyl]oxy]propyl (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

2,3-bis[[(Z)-tridec-9-enoyl]oxy]propyl (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H76O6 (736.5641596)


   

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C47H76O6 (736.5641596)


   

[1-dodecanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-dodecanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C47H76O6 (736.5641596)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C42H72O10 (736.5125212)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C42H72O10 (736.5125212)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H72O10 (736.5125212)


   

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C42H72O10 (736.5125212)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H72O10 (736.5125212)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

C42H72O10 (736.5125212)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H72O10 (736.5125212)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H72O10 (736.5125212)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H72O10 (736.5125212)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C42H72O10 (736.5125212)


   

[3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetracosanoate

C39H77O10P (736.5254072)


   

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptacosanoate

[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptacosanoate

C39H77O10P (736.5254072)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] pentacosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] pentacosanoate

C39H77O10P (736.5254072)


   

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexacosanoate

[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexacosanoate

C39H77O10P (736.5254072)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] octadecanoate

C39H77O10P (736.5254072)


   

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate

C39H77O10P (736.5254072)


   

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] henicosanoate

[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] henicosanoate

C39H77O10P (736.5254072)


   

[1-[(2-Hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[1-[(2-Hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C39H77O10P (736.5254072)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] nonadecanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] nonadecanoate

C39H77O10P (736.5254072)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] docosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] docosanoate

C39H77O10P (736.5254072)


   

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate

[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate

C39H77O10P (736.5254072)


   

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] tetracosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] tetracosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] hexacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] hexacosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] pentacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] pentacosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] heptacosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] heptacosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] henicosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] henicosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] nonadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] nonadecanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadecanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadecanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] icosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] icosanoate

C39H77O10P (736.5254072)


   

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tricosanoate

[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tricosanoate

C39H77O10P (736.5254072)


   

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] docosanoate

[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] docosanoate

C39H77O10P (736.5254072)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] hexadecanoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] hexadecanoate

C47H76O6 (736.5641596)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

C47H76O6 (736.5641596)


   

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-tetradecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-tetradecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H76O6 (736.5641596)


   

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C47H76O6 (736.5641596)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C47H76O6 (736.5641596)


   

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H76O6 (736.5641596)


   

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (Z)-hexadec-7-enoate

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (Z)-hexadec-7-enoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C47H76O6 (736.5641596)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-dodecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-dodecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H76O6 (736.5641596)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

C47H76O6 (736.5641596)


   

2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H76O6 (736.5641596)


   

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tetradecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tetradecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H76O6 (736.5641596)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H76O6 (736.5641596)


   

[(4E,8E,12E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(14Z,16Z)-docosa-14,16-dienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] hexadecanoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] hexadecanoate

C47H76O6 (736.5641596)


   

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H76O6 (736.5641596)


   

[3-tetradecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-tetradecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H76O6 (736.5641596)


   

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

C47H76O6 (736.5641596)


   

2,3-bis[[(Z)-dodec-5-enoyl]oxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

2,3-bis[[(Z)-dodec-5-enoyl]oxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C47H76O6 (736.5641596)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H76O6 (736.5641596)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (Z)-icos-11-enoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (Z)-icos-11-enoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

C47H76O6 (736.5641596)


   

[3-dodecanoyloxy-2-[(Z)-dodec-5-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-dodecanoyloxy-2-[(Z)-dodec-5-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C47H76O6 (736.5641596)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

C47H76O6 (736.5641596)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H76O6 (736.5641596)


   

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H76O6 (736.5641596)


   

[1-dodecanoyloxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[1-dodecanoyloxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H76O6 (736.5641596)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-octadec-11-enoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-octadec-11-enoate

C47H76O6 (736.5641596)


   

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

C47H76O6 (736.5641596)


   

[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

[3-dodecanoyloxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-dodecanoyloxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H76O6 (736.5641596)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H76O6 (736.5641596)


   

[1-dodecanoyloxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-dodecanoyloxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H76O6 (736.5641596)


   

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C47H76O6 (736.5641596)


   

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H77N2O6P (736.5518952)


   

2,3-bis[[(Z)-tridec-8-enoyl]oxy]propyl (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

2,3-bis[[(Z)-tridec-8-enoyl]oxy]propyl (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H76O6 (736.5641596)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H76O6 (736.5641596)


   

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

C47H76O6 (736.5641596)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C47H76O6 (736.5641596)


   

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C47H76O6 (736.5641596)


   

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (Z)-heptadec-7-enoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (Z)-heptadec-7-enoate

C47H76O6 (736.5641596)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H76O6 (736.5641596)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C47H76O6 (736.5641596)


   

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H76O6 (736.5641596)


   

2,3-bis[[(Z)-tetradec-9-enoyl]oxy]propyl (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

2,3-bis[[(Z)-tetradec-9-enoyl]oxy]propyl (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H76O6 (736.5641596)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H73N2O7P (736.5155118)


   

[(E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H73N2O7P (736.5155118)


   

[(8E,12E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H73N2O7P (736.5155118)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H72O10 (736.5125212)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] tricosanoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] tricosanoate

C39H77O10P (736.5254072)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] docosanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] docosanoate

C39H77O10P (736.5254072)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] nonadecanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] nonadecanoate

C39H77O10P (736.5254072)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H72O10 (736.5125212)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H72O10 (736.5125212)


   

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] henicosanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] henicosanoate

C39H77O10P (736.5254072)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H72O10 (736.5125212)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H72O10 (736.5125212)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

C42H72O10 (736.5125212)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] icosanoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] icosanoate

C39H77O10P (736.5254072)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C42H72O10 (736.5125212)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H72O10 (736.5125212)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H72O10 (736.5125212)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] docosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] docosanoate

C39H77O10P (736.5254072)


   

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H72O10 (736.5125212)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C42H72O10 (736.5125212)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C42H72O10 (736.5125212)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H70NO7+ (736.5152009999999)


   

[(2R)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] tricosanoate

[(2R)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] tricosanoate

C39H77O10P (736.5254072)


   

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-dodecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(Z)-hexadec-9-enoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[carboxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[3-nonanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-nonanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[hydroxy-[2-hydroxy-3-[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[carboxy-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[3-heptadecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-heptadecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H78NO8+ (736.5727128)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-decanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-decanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[2-hexanoyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-decoxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decoxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H75NO7P+ (736.5280869999999)


   

1-eicosyl-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-eicosyl-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

1-octadecyl-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-octadecyl-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

1-hexadecyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-hexadecyl-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H81O9P (736.5617906)


   

Mannosyl-1beta-phosphomycoketide C34

Mannosyl-1beta-phosphomycoketide C34

C40H81O9P (736.5617906)


   

TG(44:7)

TG(16:0_14:3_14:4)

C47H76O6 (736.5641596)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SM(37:5)

SM(d14:0_23:5)

C42H77N2O6P (736.5518952)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

phSM(34:0)

phSM(t18:0_16:0)

C39H81N2O8P (736.5730236)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(38:5)

PEt(18:1(1)_20:4)

C43H77O7P (736.5406622)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(38:5)

BisMePA(18:2(1)_20:3)

C43H77O7P (736.5406622)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

FAHFA 24:6/O-26:7

FAHFA 24:6/O-26:7

C50H72O4 (736.5430312)


   

FAHFA 24:7/O-26:6

FAHFA 24:7/O-26:6

C50H72O4 (736.5430312)


   

FAHFA 25:6/O-25:7

FAHFA 25:6/O-25:7

C50H72O4 (736.5430312)


   

FAHFA 25:7/O-25:6

FAHFA 25:7/O-25:6

C50H72O4 (736.5430312)


   

FAHFA 26:6/O-24:7

FAHFA 26:6/O-24:7

C50H72O4 (736.5430312)


   

FAHFA 26:7/O-24:6

FAHFA 26:7/O-24:6

C50H72O4 (736.5430312)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PA P-16:0/24:4 or PA O-16:1/24:4

PA P-16:0/24:4 or PA O-16:1/24:4

C43H77O7P (736.5406622)


   
   

PA P-18:0/22:4 or PA O-18:1/22:4

PA P-18:0/22:4 or PA O-18:1/22:4

C43H77O7P (736.5406622)


   
   

PA P-20:0/20:4 or PA O-20:1/20:4

PA P-20:0/20:4 or PA O-20:1/20:4

C43H77O7P (736.5406622)


   
   

PA P-20:1/20:3 or PA O-20:2/20:3

PA P-20:1/20:3 or PA O-20:2/20:3

C43H77O7P (736.5406622)


   
   

PA P-22:0/18:4 or PA O-22:1/18:4

PA P-22:0/18:4 or PA O-22:1/18:4

C43H77O7P (736.5406622)


   
   

PA P-22:1/18:3 or PA O-22:2/18:3

PA P-22:1/18:3 or PA O-22:2/18:3

C43H77O7P (736.5406622)


   
   

PA P-40:4 or PA O-40:5

PA P-40:4 or PA O-40:5

C43H77O7P (736.5406622)