Exact Mass: 734.5124377999998

Exact Mass Matches: 734.5124377999998

Found 482 metabolites which its exact mass value is equals to given mass value 734.5124377999998, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Erythromycylamine

10-amino-6-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-14-ethyl-7,12,13-trihydroxy-4-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-3,5,7,9,11,13-hexamethyl-1-oxacyclotetradecan-2-one

C37H70N2O12 (734.4928500000001)


   

PA(15:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(15:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/PGF1alpha), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/15:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(PGF1alpha/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/15:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(octadecanoyloxy)propoxy]phosphonic acid

C39H75O10P (734.509758)


PA(18:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/18:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(octadecanoyloxy)propoxy]phosphonic acid

C39H75O10P (734.509758)


PA(18:1(12Z)-2OH(9,10)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(a-15:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/PGF1alpha), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/a-15:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(PGF1alpha/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/a-15:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(i-15:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/PGF1alpha), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/i-15:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H71O11P (734.4733745999999)


PA(PGF1alpha/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/i-15:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C39H75O10P (734.509758)


PA(i-18:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/i-18:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(16-methylheptadecanoyl)oxy]propoxy]phosphonic acid

C39H75O10P (734.509758)


PA(18:1(12Z)-2OH(9,10)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-18:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-O(9S,10R)/i-14:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(12-methyltridecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C38H71O11P (734.4733745999999)


PG(18:1(12Z)-O(9S,10R)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-O(9S,10R)/i-14:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-14:0/18:1(9Z)-O(12,13))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C38H71O11P (734.4733745999999)


PG(i-14:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-14:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)-O(12,13)/i-14:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C38H71O11P (734.4733745999999)


PG(18:1(9Z)-O(12,13)/i-14:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)-O(12,13)/i-14:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) consists of a sphingosine backbone and a 5-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) consists of a sphingosine backbone and a 15-oxo-eicosatetraenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) consists of a sphingosine backbone and a 18-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) consists of a sphingosine backbone and a 15-hydroxyleicosapentaenyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) consists of a sphingosine backbone and a 12-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O7P (734.4998625999999)


SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) consists of a sphingosine backbone and a 5-hydroxyleicosapentaenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Sarcohydroquinone sulfate C

Sarcohydroquinone sulfate C

C46H70O5S (734.494369)


   

Lupeol-3-O-??-D-xylopyranosyl(1鈥樏傗垎4)-O-??-D-glucopyranoside

Lupeol-3-O-??-D-xylopyranosyl(1鈥樏傗垎4)-O-??-D-glucopyranoside

C42H70O10 (734.496872)


   
   

olean-12-en-3-O-beta-D-galactopyranosyl(1->4)-O-alpha-L-rhamnopyranoside

olean-12-en-3-O-beta-D-galactopyranosyl(1->4)-O-alpha-L-rhamnopyranoside

C42H70O10 (734.496872)


   

alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->3)-alpha-amyrin

alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->3)-alpha-amyrin

C42H70O10 (734.496872)


   
   

PG(13:0/20:1(11Z))

1-tridecanoyl-2-(11Z-eicosenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(14:0/19:1(9Z))

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(14:1(9Z)/19:0)

1-(9Z-tetradecenoyl)-2-nonadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(15:0/18:1(9Z))

1-pentadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(15:1(9Z)/18:0)

1-(9Z-pentadecenoyl)-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(16:1(9Z)/17:0)

1-(9Z-hexadecenoyl)-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(17:0/16:1(9Z))

1-heptadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(17:1(9Z)/16:0)

1-(9Z-heptadecenoyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(18:0/15:1(9Z))

1-octadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(18:1(9Z)/15:0)

1-(9Z-octadecenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(19:0/14:1(9Z))

1-nonadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(19:1(9Z)/14:0)

1-(9Z-nonadecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(20:1(11Z)/13:0)

1-(11Z-eicosenoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(16:0/17:1(9Z))

1-hexadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG(O-20:0/14:1(9Z))

1-eicosyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PG(O-18:0/16:1(9Z))

1-octadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PG(O-16:0/18:1(9Z))

1-hexadecyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PG(P-16:0/18:0)

1-(1Z-hexadecenyl)-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PG(P-18:0/16:0)

1-(1Z-octadecenyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PG(P-20:0/14:0)

1-(1Z-eicosenyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PA(17:2(9Z,12Z)/22:4(7Z,10Z,13Z,16Z))

1-(9Z,12Z-heptadecadienoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(19:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-nonadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/19:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(22:4(7Z,10Z,13Z,16Z)/17:2(9Z,12Z))

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/17:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-heptadecanoyl-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(17:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-heptadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA(O-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-octadecyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C43H75O7P (734.525013)


   

PA(P-20:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-(1Z-eicosenyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C43H75O7P (734.525013)


   

PG 33:1

1-hexadecanoyl-2-(9R, 11S-methylene-hexadecanoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

PG O-34:1

1-(1Z-octadecenyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

PA 39:6

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C42H71O8P (734.4886296)


   

PA O-40:6

1-(1Z-eicosenyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C43H75O7P (734.525013)


   

Dihydroxylycopene glucoside

1-(beta-D-glucopyranosyloxy)-1,2,1,2-tetrahydro-psi,psi-carotene

C46H70O7 (734.512127)


   

(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[(2R,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-11-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one

(2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[(2R,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-11-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-2-ethyl-3,4,10-trihydroxy-3,5,6,8,10,12,14-heptamethyl-1-oxa-6-azacyclopentadecan-15-one

C37H70N2O12 (734.4928500000001)


   

20-(dinonylphenoxy)-3,6,9,12,15,18-hexaoxaicosyl dihydrogen phosphate

20-(dinonylphenoxy)-3,6,9,12,15,18-hexaoxaicosyl dihydrogen phosphate

C38H71O11P (734.4733745999999)


   

9(S)-Erythromycylamine

(9S)-9-Amino-9-deoxoerythromycin

C37H70N2O12 (734.4928500000001)


   
   

[(2R)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[8-[(1S,2R)-2-hexylcyclopropyl]octanoyloxy]propyl] hexadecanoate

[(2R)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[8-[(1S,2R)-2-hexylcyclopropyl]octanoyloxy]propyl] hexadecanoate

C39H75O10P (734.509758)


   
   

1,2-Dihexadecanoyl-sn-glycero-3-phospho-l-serine

1,2-Dihexadecanoyl-sn-glycero-3-phospho-l-serine

C38H73NO10P- (734.4971827999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] hexadecanoate

C39H75O10P (734.509758)


   
   
   
   
   
   
   
   
   
   

PA(18:0/18:1(12Z)-2OH(9,10))

PA(18:0/18:1(12Z)-2OH(9,10))

C39H75O10P (734.509758)


   

PA(18:1(12Z)-2OH(9,10)/18:0)

PA(18:1(12Z)-2OH(9,10)/18:0)

C39H75O10P (734.509758)


   

PA(i-18:0/18:1(12Z)-2OH(9,10))

PA(i-18:0/18:1(12Z)-2OH(9,10))

C39H75O10P (734.509758)


   

PA(18:1(12Z)-2OH(9,10)/i-18:0)

PA(18:1(12Z)-2OH(9,10)/i-18:0)

C39H75O10P (734.509758)


   

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

SM(d16:2(4E,8Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C41H71N2O7P (734.4998625999999)


   

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

SM(d16:2(4E,8Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C41H71N2O7P (734.4998625999999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C41H71N2O7P (734.4998625999999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C41H71N2O7P (734.4998625999999)


   

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

SM(d16:2(4E,8Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C41H71N2O7P (734.4998625999999)


   

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

SM(d16:2(4E,8Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C41H71N2O7P (734.4998625999999)


   

[(2R)-1,1,2,3,3-Pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-1,1,2,3,3-Pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.509758)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-octadec-9-enoate

C40H79O9P (734.5461414)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-16,16,17,17,18,18,18-heptadeuteriooctadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-16,16,17,17,18,18,18-heptadeuteriooctadec-9-enoate

C39H75O10P (734.509758)


   

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-hexadec-9-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] pentadecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] henicosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] henicosanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (Z)-tetradec-9-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-pentadec-9-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (Z)-tridec-9-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] nonadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] nonadecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] tetradecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] hexadecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] tridecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] octadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] octadecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-heptadec-9-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] dodecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] icosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] icosanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-nonadec-9-enoate

C40H79O9P (734.5461414)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-henicos-11-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-docos-13-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-icos-11-enoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] heptadecanoate

C40H79O9P (734.5461414)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] decanoate

C40H79O9P (734.5461414)


   

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H74O6 (734.5485103999999)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C47H74O6 (734.5485103999999)


   

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C47H74O6 (734.5485103999999)


   

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C47H74O6 (734.5485103999999)


   

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C47H74O6 (734.5485103999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.496872)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.496872)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (Z)-heptadec-9-enoate

C42H70O10 (734.496872)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H70O10 (734.496872)


   

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C42H70O10 (734.496872)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.496872)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H70O10 (734.496872)


   

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H75N2O6P (734.5362460000001)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate

C39H75O10P (734.509758)


   

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

C39H75O10P (734.509758)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

C39H75O10P (734.509758)


   

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] icosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] icosanoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] nonadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] nonadecanoate

C39H75O10P (734.509758)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C39H75O10P (734.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C39H75O10P (734.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C39H75O10P (734.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C39H75O10P (734.509758)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (Z)-henicos-11-enoate

C42H71O8P (734.4886296)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O8P (734.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C39H75O10P (734.509758)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] icosanoate

C39H75O10P (734.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C39H75O10P (734.509758)


   

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H71O8P (734.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-docos-13-enoate

C39H75O10P (734.509758)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.509758)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H71O8P (734.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C39H75O10P (734.509758)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C39H75O10P (734.509758)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C42H71O8P (734.4886296)


   

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H71O8P (734.4886296)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C42H71O8P (734.4886296)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C39H75O10P (734.509758)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] octadecanoate

C39H75O10P (734.509758)


   

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

[1-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H74O6 (734.5485103999999)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] hexadecanoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] hexadecanoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H74O6 (734.5485103999999)


   

[1-dodecanoyloxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[1-dodecanoyloxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H74O6 (734.5485103999999)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H74O6 (734.5485103999999)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H74O6 (734.5485103999999)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,12Z)-octadeca-10,12-dienoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C47H74O6 (734.5485103999999)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H74O6 (734.5485103999999)


   

2,3-bis[[(Z)-dodec-5-enoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

2,3-bis[[(Z)-dodec-5-enoyl]oxy]propyl (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C47H74O6 (734.5485103999999)


   

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-dodecanoyloxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-dodecanoyloxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C47H74O6 (734.5485103999999)


   

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H74O6 (734.5485103999999)


   

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C47H74O6 (734.5485103999999)


   

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (4Z,7Z)-hexadeca-4,7-dienoate

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (4Z,7Z)-hexadeca-4,7-dienoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C47H74O6 (734.5485103999999)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-tetradecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-tetradecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C47H74O6 (734.5485103999999)


   

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H74O6 (734.5485103999999)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate

C47H74O6 (734.5485103999999)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H74O6 (734.5485103999999)


   

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H74O6 (734.5485103999999)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

C47H74O6 (734.5485103999999)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

C47H74O6 (734.5485103999999)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C47H74O6 (734.5485103999999)


   

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C47H74O6 (734.5485103999999)


   

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C47H74O6 (734.5485103999999)


   

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C47H74O6 (734.5485103999999)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate

C47H74O6 (734.5485103999999)


   

2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C47H74O6 (734.5485103999999)


   

[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-3,4-dihydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H71N2O7P (734.4998625999999)


   

[(8E,12E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H71N2O7P (734.4998625999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-11-enoate

C39H75O10P (734.509758)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (14E,16E)-tricosa-14,16-dienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (14E,16E)-tricosa-14,16-dienoate

C42H71O8P (734.4886296)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C42H71O8P (734.4886296)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C39H75O10P (734.509758)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-icos-13-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C39H75O10P (734.509758)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O8P (734.4886296)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadecanoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C39H75O10P (734.509758)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H71O8P (734.4886296)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O8P (734.4886296)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-11-enoate

C39H75O10P (734.509758)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-icos-13-enoate

C39H75O10P (734.509758)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H71O8P (734.4886296)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H68NO7+ (734.4995518000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-docos-13-enoate

C39H75O10P (734.509758)


   

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.496872)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C45H68NO7+ (734.4995518000001)


   

2-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H69NO8P+ (734.4760544)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] heptadecanoate

C39H75O10P (734.509758)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] octadec-17-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-docos-13-enoate

C39H75O10P (734.509758)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

C42H71O8P (734.4886296)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.509758)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-4-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] heptadecanoate

C39H75O10P (734.509758)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-9-enoate

C39H75O10P (734.509758)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H71O8P (734.4886296)


   

2-[[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H69NO8P+ (734.4760544)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-7-enoate

C39H75O10P (734.509758)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] octadec-17-enoate

C39H75O10P (734.509758)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C39H75O10P (734.509758)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H71O8P (734.4886296)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C39H75O10P (734.509758)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-6-enoate

C39H75O10P (734.509758)


   

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H70O10 (734.496872)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] nonadecanoate

C39H75O10P (734.509758)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H70O10 (734.496872)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.496872)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] nonadecanoate

C39H75O10P (734.509758)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C42H70O10 (734.496872)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] heptadecanoate

C39H75O10P (734.509758)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C42H71O8P (734.4886296)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H70O10 (734.496872)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C42H70O10 (734.496872)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-13-enoate

C39H75O10P (734.509758)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-tricos-11-enoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-tricos-11-enoate

C42H71O8P (734.4886296)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate

C42H70O10 (734.496872)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (E)-heptadec-9-enoate

C39H75O10P (734.509758)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-octadec-11-enoate

C39H75O10P (734.509758)


   

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C42H70O10 (734.496872)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadecanoate

C39H75O10P (734.509758)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H71O8P (734.4886296)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[carboxy-[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[carboxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[hydroxy-[2-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[carboxy-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C43H76NO8+ (734.5570636)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

2-[[2-hexanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H73NO7P+ (734.5124377999998)


   

1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine(1-)

1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine(1-)

C38H73NO10P (734.4971827999999)


A 3-sn-phosphatidyl-L-serine(1-) that is the conjugate base of 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine; major species at pH 7.3.

   

(9S)-erythromycyclamine

(9S)-erythromycyclamine

C37H70N2O12 (734.4928500000001)


A macrolide antibiotic that is erythromycin A in which the ketone group has been converted to the corresponding imine and then reduced to give the corresponding amino compound (the 9S diastereoisomer).

   

1-(1Z-hexadecenyl)-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-(1Z-hexadecenyl)-2-octadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

1-(1Z-octadecenyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

1-(1Z-octadecenyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

1-eicosyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-eicosyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

1-octadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-octadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

1-hexadecyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-hexadecyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C40H79O9P (734.5461414)


   

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-tetradecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H75O10P (734.509758)


   

phosphatidylglycerol 33:1

phosphatidylglycerol 33:1

C39H75O10P (734.509758)


A phosphatidylglycerol in which the two acyl groups contain a total of 33 carbon atoms and 1 double bond.

   

phosphatidylglycerol 15:0/18:1

phosphatidylglycerol 15:0/18:1

C39H75O10P (734.509758)


A phosphatidylglycerol 33:1 in which the acyl group at position 1 contains 15 carbons and no double bonds while that at position 2 contains 18 carbons and 1 double bond.

   

phosphatidylserine 32:0(1-)

phosphatidylserine 32:0(1-)

C38H73NO10P (734.4971827999999)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 0 double bonds.

   

phosphatidylglycerol (16:0/17:1)

phosphatidylglycerol (16:0/17:1)

C39H75O10P (734.509758)


A phosphatidylglycerol 33:1 in which the acyl group at C-1 contains 16 carbons and no double bonds while that at C-2 contains 17 carbons and 1 double bond.

   

erythromycin A(1+)

erythromycin A(1+)

C37H68NO13 (734.4690418)


An erythromycin cation that is the conjugate acid of erythromycin A, arising from protonation of the tertiary amino group on the 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl residue; major species at pH 7.3.

   

TG(44:8)

TG(4:0_18:2_22:6)

C47H74O6 (734.5485103999999)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SM(37:6)

SM(d14:0_23:6)

C42H75N2O6P (734.5362460000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(33:5)

MGDG(18:1_15:4)

C42H70O10 (734.496872)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(34:5)

MGDG(14:1(1)_20:4)

C43H74O9 (734.5332554)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

phSM(34:1)

phSM(t18:1_16:0)

C39H79N2O8P (734.5573744000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(38:6)

BisMePA(18:3(1)_20:3)

C43H75O7P (734.525013)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(37:6)

BisMePA(17:1_20:5)

C42H71O8P (734.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(38:6)

PEt(18:2(1)_20:4)

C43H75O7P (734.525013)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 24:7/O-26:7

FAHFA 24:7/O-26:7

C50H70O4 (734.527382)


   

FAHFA 25:7/O-25:7

FAHFA 25:7/O-25:7

C50H70O4 (734.527382)


   

FAHFA 26:7/O-24:7

FAHFA 26:7/O-24:7

C50H70O4 (734.527382)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PA P-16:1/24:4 or PA O-16:2/24:4

PA P-16:1/24:4 or PA O-16:2/24:4

C43H75O7P (734.525013)


   
   

PA P-18:0/22:5 or PA O-18:1/22:5

PA P-18:0/22:5 or PA O-18:1/22:5

C43H75O7P (734.525013)


   
   

PA P-18:1/22:4 or PA O-18:2/22:4

PA P-18:1/22:4 or PA O-18:2/22:4

C43H75O7P (734.525013)


   
   

PA P-20:0/20:5 or PA O-20:1/20:5

PA P-20:0/20:5 or PA O-20:1/20:5

C43H75O7P (734.525013)


   
   

PA P-20:1/20:4 or PA O-20:2/20:4

PA P-20:1/20:4 or PA O-20:2/20:4

C43H75O7P (734.525013)


   
   

PA P-22:1/18:4 or PA O-22:2/18:4

PA P-22:1/18:4 or PA O-22:2/18:4

C43H75O7P (734.525013)


   
   

PA P-40:5 or PA O-40:6

PA P-40:5 or PA O-40:6

C43H75O7P (734.525013)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/20:0 or PG O-14:1/20:0

PG P-14:0/20:0 or PG O-14:1/20:0

C40H79O9P (734.5461414)


   
   

PG P-16:0/18:0 or PG O-16:1/18:0

PG P-16:0/18:0 or PG O-16:1/18:0

C40H79O9P (734.5461414)


   
   

PG P-18:0/16:0 or PG O-18:1/16:0

PG P-18:0/16:0 or PG O-18:1/16:0

C40H79O9P (734.5461414)


   
   
   

PG P-20:0/14:0 or PG O-20:1/14:0

PG P-20:0/14:0 or PG O-20:1/14:0

C40H79O9P (734.5461414)


   
   

PG P-22:0/12:0 or PG O-22:1/12:0

PG P-22:0/12:0 or PG O-22:1/12:0

C40H79O9P (734.5461414)


   
   

PG P-34:0 or PG O-34:1

PG P-34:0 or PG O-34:1

C40H79O9P (734.5461414)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PMe(38:6)

PMe(16:0_22:6)

C42H71O8P (734.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved