Exact Mass: 732.5205968
Exact Mass Matches: 732.5205968
Found 500 metabolites which its exact mass value is equals to given mass value 732.5205968
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(14:0/24:0)
PA(14:0/24:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/24:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/22:0)
PA(16:0/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/22:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/20:0)
PA(18:0/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/20:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(19:0/19:0)
PA(19:0/19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(19:0/19:0), in particular, consists of one chain of nonadecylic acid at the C-1 position and one chain of nonadecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/18:0)
PA(20:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/18:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/17:0)
PA(21:0/17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/17:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of margaric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/16:0)
PA(22:0/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/16:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(24:0/14:0)
PA(24:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:0/14:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/i-18:0)
PA(20:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-18:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/a-17:0)
PA(21:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/a-17:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/i-17:0)
PA(21:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/i-17:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/i-16:0)
PA(22:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/i-16:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/a-25:0)
PA(a-13:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/a-25:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/17:0)
PA(a-21:0/17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/17:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of margaric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/a-17:0)
PA(a-21:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/a-17:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/i-17:0)
PA(a-21:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/i-17:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-25:0/13:0)
PA(a-25:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/13:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-25:0/a-13:0)
PA(a-25:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/a-13:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-25:0/i-13:0)
PA(a-25:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/i-13:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/a-25:0)
PA(i-13:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/a-25:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-19:0/i-19:0)
PA(i-19:0/i-19:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-19:0/i-19:0), in particular, consists of one chain of isononadecanoic acid at the C-1 position and one chain of isononadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/18:0)
PA(i-20:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/18:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/i-18:0)
PA(i-20:0/i-18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-18:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isooctadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/17:0)
PA(i-21:0/17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/17:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of margaric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/a-17:0)
PA(i-21:0/a-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/a-17:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of anteisoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/i-17:0)
PA(i-21:0/i-17:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/i-17:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isoheptadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-22:0/16:0)
PA(i-22:0/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/16:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-22:0/i-16:0)
PA(i-22:0/i-16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-22:0/i-16:0), in particular, consists of one chain of isodocosanoic acid at the C-1 position and one chain of isohexadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-24:0/14:0)
PA(i-24:0/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-24:0/14:0), in particular, consists of one chain of isotetracosanoic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-24:0/i-14:0)
PA(i-24:0/i-14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-24:0/i-14:0), in particular, consists of one chain of isotetracosanoic acid at the C-1 position and one chain of isotetradecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(11Z)/18:1(12Z)-2OH(9,10))
C39H73O10P (732.4941087999999)
PA(18:1(11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/18:1(11Z))
C39H73O10P (732.4941087999999)
PA(18:1(12Z)-2OH(9,10)/18:1(11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:1(11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 11Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(9Z)/18:1(12Z)-2OH(9,10))
C39H73O10P (732.4941087999999)
PA(18:1(9Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z-octadecenoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/18:1(9Z))
C39H73O10P (732.4941087999999)
PA(18:1(12Z)-2OH(9,10)/18:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:1(9Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(P-16:0/PGF1alpha)
C39H73O10P (732.4941087999999)
PA(P-16:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/PGF1alpha), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGF1alpha/P-16:0)
C39H73O10P (732.4941087999999)
PA(PGF1alpha/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/P-16:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
SM(d16:1/18:1(12Z)-2OH(9,10))
C39H77N2O8P (732.5417252000001)
SM(d16:1/18:1(12Z)-2OH(9,10)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/18:1(12Z)-2OH(9,10)) consists of a sphingosine backbone and a 9,10-hydroxy-octadecenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
DG(21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/21:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/21:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(a-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-21:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(i-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-21:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
PG(13:0/20:2(11Z,14Z))
C39H73O10P (732.4941087999999)
PG(14:1(9Z)/19:1(9Z))
C39H73O10P (732.4941087999999)
PG(15:1(9Z)/18:1(9Z))
C39H73O10P (732.4941087999999)
PG(16:0/17:2(9Z,12Z))
C39H73O10P (732.4941087999999)
PG(16:1(9Z)/17:1(9Z))
C39H73O10P (732.4941087999999)
PG(17:1(9Z)/16:1(9Z))
C39H73O10P (732.4941087999999)
PG(17:2(9Z,12Z)/16:0)
C39H73O10P (732.4941087999999)
PG(18:1(9Z)/15:1(9Z))
C39H73O10P (732.4941087999999)
PG(18:2(9Z,12Z)/15:0)
C39H73O10P (732.4941087999999)
PG(19:1(9Z)/14:1(9Z))
C39H73O10P (732.4941087999999)
PG(20:2(11Z,14Z)/13:0)
C39H73O10P (732.4941087999999)
PG(15:0/18:2(9Z,12Z))
C39H73O10P (732.4941087999999)
PA(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PG 33:2
C39H73O10P (732.4941087999999)
O,O-Dioctadecylpentaerythritol bis(phosphite)
C41H82O6P2 (732.5586332000001)
Phosphatidylserine (1-palmitoyl, 2-palmitoleoyl)
C38H71NO10P- (732.4815335999999)
[O-(1-O-Oleoyl-2-O-myristoyl-L-glycero-3-phospho)choline]anion
2-[[(2R)-3-hexadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
DG(a-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-21:0/0:0)
DG(a-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/a-21:0)
DG(i-21:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-21:0/0:0)
DG(i-21:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-21:0)
2-[hydroxy-[(2R)-2-[(Z)-octadec-11-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[O-(1-O-Myristoyl-2-O-oleoyl-L-glycero-3-phospho)choline]anion
2-[hydroxy-[(2R)-2-octadecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
1-Palmitoleoyl-2-palmitoyl-sn-glycero-3-phosphocholine
2-[hydroxy-[(2R)-3-octadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-3-[(Z)-octadec-11-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-[(Z)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-dodecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-[(Z)-nonadec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-heptadecanoyloxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-heptadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-[(Z)-heptadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-3-[(Z)-nonadec-9-enoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-dodecanoyloxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(8E,12E,16E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] pentadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] tridecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] decanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (Z)-pentadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-nonadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] tetradecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-henicos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] dodecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (Z)-tetradec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (Z)-tridec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-icos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] octadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate
[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] hexadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] heptadecanoate
[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C39H73O10P (732.4941087999999)
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
[1-[(2-hexadecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
C39H73O10P (732.4941087999999)
[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate
C39H73O10P (732.4941087999999)
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C39H73O10P (732.4941087999999)
(1-Heptadecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(2-Nonadecanoyloxy-3-phosphonooxypropyl) nonadecanoate
(1-Octadecanoyloxy-3-phosphonooxypropan-2-yl) icosanoate
(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) docosanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) pentacosanoate
(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) heptacosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
C39H73O10P (732.4941087999999)
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) tetracosanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] heptadecanoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate
C39H73O10P (732.4941087999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate
C39H73O10P (732.4941087999999)
2-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate
[2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate
[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate
[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate
[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate
[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate
2,3-bis[[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy]propyl (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(Z)-dodec-5-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate
[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate
[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (4Z,7Z)-hexadeca-4,7-dienoate
[3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate
[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (Z)-hexadec-7-enoate
2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate
2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (5Z,8Z,11Z)-icosa-5,8,11-trienoate
[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate
[1-dodecanoyloxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-hexadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-Palmitelaidoyl-2-palmitoyl-sn-glycero-3-phosphocholine
2-[hydroxy-[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
C39H73O10P (732.4941087999999)
2-[[(2R)-3-dodecanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-4-enoate
C39H73O10P (732.4941087999999)
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] pentacosanoate
2-[[(2R)-3-heptadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-3-octadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-13-enoate
C39H73O10P (732.4941087999999)
2-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-7-enoate
C39H73O10P (732.4941087999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-9-enoate
C39H73O10P (732.4941087999999)
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate
2-[[(2R)-2-heptadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-3-octadec-17-enoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-13-enoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
C39H73O10P (732.4941087999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-4-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-dodecanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-7-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-7-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-2-octadec-17-enoyloxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
C39H73O10P (732.4941087999999)
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate
C39H73O10P (732.4941087999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-decanoyloxy-2-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] hexacosanoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-11-enoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-6-enoate
C39H73O10P (732.4941087999999)
2-[[3-hexadecanoyloxy-2-[(Z)-hexadec-4-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate
C39H73O10P (732.4941087999999)
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] octadec-17-enoate
C39H73O10P (732.4941087999999)
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
2-[[(2R)-2-hexadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate
C39H73O10P (732.4941087999999)
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] hexacosanoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] octadec-17-enoate
C39H73O10P (732.4941087999999)
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] tricosanoate
2-[hydroxy-[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-octadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate
C39H73O10P (732.4941087999999)
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] pentacosanoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
C39H73O10P (732.4941087999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-octadec-6-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-octadec-4-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] heptadecanoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(2S)-2-decanoyloxy-3-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (E)-octadec-9-enoate
C39H73O10P (732.4941087999999)
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-heptadec-9-enoate
C39H73O10P (732.4941087999999)
2-[hydroxy-[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate
C39H73O10P (732.4941087999999)
2-[[3-dodecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-heptadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-octadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-hexacos-15-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-decanoyloxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-octanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-henicos-11-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[2-hydroxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[3-nonanoyloxy-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-(9Z-pentadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)
C39H73O10P (732.4941087999999)
1-pentadecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)
C39H73O10P (732.4941087999999)
1-tridecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-sn-glycerol)
C39H73O10P (732.4941087999999)
phosphatidylserine 32:1(1-)
C38H71NO10P (732.4815335999999)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 1 double bond.
SM(37:7)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(44:9)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(38:7)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(38:7)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
phSM(34:2)
C39H77N2O8P (732.5417252000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved