Exact Mass: 730.5688504
Exact Mass Matches: 730.5688504
Found 500 metabolites which its exact mass value is equals to given mass value 730.5688504
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
SM(d18:1/18:0)
Sphingomyelin (d18:1/18:0) or SM(d18:1/18:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d18:1/18:0) consists of a sphingosine backbone and a stearic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Sphingomyelin (d18:1/18:0) or SM(d18:1/18:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(18:1/18:0) consists of oleic acid attached to the C1 position and stearic acid attached to the C2 position. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction.
1-O-beta-D-Glucopyranosyl-2,3-di-O-palmitoylglycerol
1-O-beta-D-Glucopyranosyl-2,3-di-O-palmitoylglycerol is found in fruits. 1-O-beta-D-Glucopyranosyl-2,3-di-O-palmitoylglycerol is a constituent of the leaves of Byrsonima crassifolia (nance) Constituent of the leaves of Byrsonima crassifolia (nance). 1-O-beta-D-Glucopyranosyl-2,3-di-O-palmitoylglycerol is found in fruits.
SM(d18:0/18:1(11Z))
Sphingomyelin (d18:0/18:1(11Z)) or SM(d18:0/18:1(11Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d18:0/18:1(9Z))
Sphingomyelin (d18:0/18:1(9Z)) or SM(d18:0/18:1(9Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Sphingomyelin (d18:0/18:1(9Z)) or SM(d18:0/18:1(9Z)) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction.
PA(14:0/24:1(15Z))
PA(14:0/24:1(15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/24:1(15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/24:0)
PA(14:1(9Z)/24:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/24:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:0/22:1(13Z))
PA(16:0/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/22:1(13Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(16:1(9Z)/22:0)
PA(16:1(9Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/22:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/20:1(11Z))
PA(18:0/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/20:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(11Z)/20:0)
PA(18:1(11Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/20:0), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:1(9Z)/20:0)
PA(18:1(9Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/20:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/18:1(11Z))
PA(20:0/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/18:1(11Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/18:1(9Z))
PA(20:0/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/18:1(9Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/18:0)
PA(20:1(11Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/18:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/16:1(9Z))
PA(22:0/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/16:1(9Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/16:0)
PA(22:1(13Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/16:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(24:0/14:1(9Z))
PA(24:0/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:0/14:1(9Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(24:1(15Z)/14:0)
PA(24:1(15Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:1(15Z)/14:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(22:0/PGJ2/0:0)
DG(22:0/PGJ2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:0/PGJ2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(PGJ2/22:0/0:0)
DG(PGJ2/22:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGJ2/22:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:0/0:0/PGJ2)
DG(22:0/0:0/PGJ2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(PGJ2/0:0/22:0)
DG(PGJ2/0:0/22:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-22:0/PGJ2/0:0)
DG(i-22:0/PGJ2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-22:0/PGJ2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(PGJ2/i-22:0/0:0)
DG(PGJ2/i-22:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGJ2/i-22:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-22:0/0:0/PGJ2)
DG(i-22:0/0:0/PGJ2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(PGJ2/0:0/i-22:0)
DG(PGJ2/0:0/i-22:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
ubiquinol-8
Ubiquinol 8 is a member of the class of compounds known as polyterpenoids. Polyterpenoids are terpenoids consisting of more than eight isoprene units. Ubiquinol 8 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Ubiquinol 8 can be found in a number of food items such as garden cress, lupine, feijoa, and coriander, which makes ubiquinol 8 a potential biomarker for the consumption of these food products. Ubiquinol 8 can be found primarily in blood. Ubiquinol 8 exists in all living species, ranging from bacteria to humans. In humans, ubiquinol 8 is involved in mitochondrial electron transport chain, which is a metabolic disorder. Moreover, ubiquinol 8 is found to be associated with beta-thalassemia.
SM d36:1
Found in mouse small intestine; TwoDicalId=205; MgfFile=160907_Small_Intestine_EPA_Neg_08; MgfId=1289 Found in mouse brain; TwoDicalId=85; MgfFile=160720_brain_DHA_14_Neg; MgfId=1071
(2-{[3-hydroxy-2-octadecanamidooctadec-4-en-1-yl phosphono]oxy}ethyl)trimethylazanium
PE-Cer(d14:1(4E)/24:1(15Z)(2OH))
C40H79N2O7P (730.5624594000001)
PE-Cer(d14:2(4E,6E)/24:0(2OH))
C40H79N2O7P (730.5624594000001)
PE-Cer(d16:1(4E)/22:1(13Z)(2OH))
C40H79N2O7P (730.5624594000001)
PE-Cer(d16:2(4E,6E)/22:0(2OH))
C40H79N2O7P (730.5624594000001)
Ubiquinol-8
1-O-b-D-Glucopyranosyl-2,3-di-O-palmitoylglycerol
CerPE 38:2;O3
C40H79N2O7P (730.5624594000001)
Ecdysone 22-stearate
glycine N-C^{2^}-aminoethyl-N-2-octylamino ethyl mono hydrochloride
C36H80Cl2N6O4 (730.5617780000001)
1,2-Di-o-palmitoyl-3-o-beta-d-glucosyl-sn-glycerol
1,2-dipalmitoyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerol
[1-[butoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (E)-octadec-9-enoate
2-[hydroxy-[2-[(1Z,11Z)-octadeca-1,11-dienoxy]-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(1Z,9Z)-octadeca-1,9-dienoxy]-3-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-3-[(1Z,11Z)-octadeca-1,11-dienoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(1Z,9Z)-octadeca-1,9-dienoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
1,2-dipalmitoyl-3-beta-D-galactosyl-sn-glycerol
A 1,2-diacyl-3-beta-D-galactosyl-sn-glycerol in which the groups at the 1- and 2-positions are both palmitoyl.
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
[1-hydroxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[1-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hydroxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[1-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
4-[12-hydroxy-10,13-dimethyl-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
(1-hydroxy-3-nonanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate
[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexacosanoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] pentacosanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptacosanoate
[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tetracosanoate
[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] tricosanoate
[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate
[1-[3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate
[1-Dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate
[1-Tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate
[1-Tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-Pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate
(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate
[2-[(Z)-nonadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[2-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] pentacosanoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-hexacos-15-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate
[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tetracosanoate
(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate
[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate
[(E)-2-[[(Z)-heptadec-9-enoyl]amino]-3,4-dihydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H79N2O7P (730.5624594000001)
[(8E,12E)-2-(heptadecanoylamino)-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H79N2O7P (730.5624594000001)
[2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3,4-dihydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H79N2O7P (730.5624594000001)
[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2R)-3-[(E)-octadec-1-enoxy]-2-[(E)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-dodecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tetracosanoate
[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] henicosanoate
[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-hexadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate
[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-octadecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-pentadecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate
[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate
[1-carboxy-3-[2-decanoyloxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] tricosanoate
[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[1-carboxy-3-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] icosanoate
[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (E)-hexacos-5-enoate
[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate
[1-carboxy-3-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (E)-hexacos-5-enoate
[1-carboxy-3-[2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(14E,16E)-docosa-14,16-dienoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-carboxy-3-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-carboxy-3-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] nonadecanoate
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadecanoate
[1-carboxy-3-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] icosanoate
[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] tricosanoate
[1-carboxy-3-[2-[(7E,9E)-nonadeca-7,9-dienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate
[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-octadecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tetracosanoate
[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(E)-dodec-5-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] icosanoate
[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] nonadecanoate
[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] docosanoate
[1-carboxy-3-[2-hexadecanoyloxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-hexadecanoyloxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(E)-dodec-5-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (E)-tetracos-15-enoate
[1-carboxy-3-[3-[(14E,16E)-docosa-14,16-dienoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (E)-tetracos-15-enoate
[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
2-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-dodecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] henicosanoate
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] docosanoate
[1-carboxy-3-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-dodecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium
2-[[2-heptadecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-hexadecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-hydroxy-3-[(16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-16,19,22,25,28,31-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[3-nonoxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-heptadecoxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecoxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-pentadecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-nonanoyloxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(17Z,20Z)-octacosa-17,20-dienoxy]-2-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-heptadec-9-enoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-heptanoyloxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-dodecanoyloxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-(9Z-hexadecenoyl)-2-docosanoyl-glycero-3-phosphate
1-icosanoyl-2-oleoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as icosanoyl (arachidoyl) and oleoyl respectively.
1-oleoyl-2-icosanoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as oleoyl and icosanoyl (arachidoyl) respectively.
BisMePA(36:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AcHexChE(12:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
SM(35:2)
C40H79N2O7P (730.5624594000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
phSM(35:2)
C40H79N2O7P (730.5624594000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGDG(32:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGMG(33:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(36:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PMe(38:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGDG(33:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
[(2r,3r,4r,5s,6r)-6-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl decanoate
1,2-dipalmitoyl-3-beta-galactosylglycerol
{"Ingredient_id": "HBIN000835","Ingredient_name": "1,2-dipalmitoyl-3-beta-galactosylglycerol","Alias": "NA","Ingredient_formula": "C41H78O10","Ingredient_Smile": "CCCCCCCCCCCCCCCC(=O)OCC(COC1C(C(C(C(O1)CO)O)O)O)OC(=O)CCCCCCCCCCCCCCC","Ingredient_weight": "731.1 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9952;9953","PubChem_id": "53757970","DrugBank_id": "NA"}