Exact Mass: 730.4291902

Exact Mass Matches: 730.4291902

Found 350 metabolites which its exact mass value is equals to given mass value 730.4291902, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(15:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(15:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/PGE2), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGE2/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(15:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/PGD2), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGD2/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-(pentadecanoyloxy)-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/15:0)

[(2R)-2-(pentadecanoyloxy)-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(hexadecanoyloxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(hexadecanoyloxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,11Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,11Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 9Z,12Z-octadecadienoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z)), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 9Z,12Z-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(18:4(6Z,9Z,12Z,15Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:4(6Z,9Z,12Z,15Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H63O9P (730.4209478)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:4(6Z,9Z,12Z,15Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 6Z,9Z,12Z,15Z-octadecatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(hexadec-1-en-1-yloxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(P-16:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/PGF2alpha), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/P-16:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(hexadec-1-en-1-yloxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(PGF2alpha/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/P-16:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/PGE1)

[(2R)-3-(hexadec-1-en-1-yloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(P-16:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/PGE1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/P-16:0)

[(2R)-2-(hexadec-1-en-1-yloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(PGE1/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/P-16:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/PGD1)

[(2R)-3-(hexadec-1-en-1-yloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(P-16:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/PGD1), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/P-16:0)

[(2R)-2-(hexadec-1-en-1-yloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(PGD1/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/P-16:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(a-15:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/PGE2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/a-15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGE2/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/a-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(a-15:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/PGD2), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/a-15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGD2/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/a-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(i-15:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/PGE2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/i-15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGE2/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/i-15:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(i-15:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/PGD2), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/i-15:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(PGD2/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/i-15:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H67O11P (730.4420762)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphonic acid

C39H71O10P (730.4784596)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

C38H67O11P (730.4420762)


PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H67O11P (730.4420762)


PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   
   

1-beta-xylosyl-3,2-dihydroxy-beta,psi-caroten-4-one|1-xylosyl-2-hydroxyflexixanthin

1-beta-xylosyl-3,2-dihydroxy-beta,psi-caroten-4-one|1-xylosyl-2-hydroxyflexixanthin

C45H62O8 (730.4444452)


   
   
   

4-deoleandrosyl-6,8a-seco-6,8a-deoxy-5-oxoavermectin B2a

4-deoleandrosyl-6,8a-seco-6,8a-deoxy-5-oxoavermectin B2a

C41H62O11 (730.4291902)


   
   

(6alpha,11alpha)-6-[(2-O-acetyl-alpha-L-arabinopyranosyl)oxy]-3-oxotaraxast-20-ene-11,28-diyl diacetate

(6alpha,11alpha)-6-[(2-O-acetyl-alpha-L-arabinopyranosyl)oxy]-3-oxotaraxast-20-ene-11,28-diyl diacetate

C41H62O11 (730.4291902)


   

(24S)-3-O-(2-O-methyl-beta-D-xylopyranosyl)-24-O-(alpha-L-arabinofuranosyl)-5alpha-cholestane-3beta,4beta,6beta,15alpha,24-pentaol|kurilensoside J

(24S)-3-O-(2-O-methyl-beta-D-xylopyranosyl)-24-O-(alpha-L-arabinofuranosyl)-5alpha-cholestane-3beta,4beta,6beta,15alpha,24-pentaol|kurilensoside J

C38H66O13 (730.4503186000001)


   
   

2-O-(E)-2-butenoyl-25-O-acetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetylcimigenol-3-O-[2-O-(E)-2-butenoyl]-beta-D-xylopyranoside

2-O-(E)-2-butenoyl-25-O-acetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetylcimigenol-3-O-[2-O-(E)-2-butenoyl]-beta-D-xylopyranoside

C41H62O11 (730.4291902)


   

2-O-acetyl-3-O-(3,4-O-diacetyl)-alpha-L-arabinopyranosylmaslinic acid

2-O-acetyl-3-O-(3,4-O-diacetyl)-alpha-L-arabinopyranosylmaslinic acid

C41H62O11 (730.4291902)


   
   

25-O-acetylcimigenol-3-O-[4-O-(E)-2-butenoyl]-beta-D-xylopyranoside|4-O-(E)-2-butenoyl-25-O-acetylcimigenol-3-O-beta-D-xylopyranoside

25-O-acetylcimigenol-3-O-[4-O-(E)-2-butenoyl]-beta-D-xylopyranoside|4-O-(E)-2-butenoyl-25-O-acetylcimigenol-3-O-beta-D-xylopyranoside

C41H62O11 (730.4291902)


   
   

(25R)-3-O-benzoyl-5alpha-spirostane-2alpha,3beta,5,6beta-tetrol 2-O-beta-D-glucopyranoside|(25R)-5alpha-spirostane-2alpha,3beta,5alpha,6beta-tetrol 2-O-beta-D-glucopyranoside 3-O-benzoyl ester|3-O-benzoylalliogenin 2-O-beta-D-glucopyranoside

(25R)-3-O-benzoyl-5alpha-spirostane-2alpha,3beta,5,6beta-tetrol 2-O-beta-D-glucopyranoside|(25R)-5alpha-spirostane-2alpha,3beta,5alpha,6beta-tetrol 2-O-beta-D-glucopyranoside 3-O-benzoyl ester|3-O-benzoylalliogenin 2-O-beta-D-glucopyranoside

C40H58O12 (730.3928068)


   
   

3,3-(oxopropyl)dicoronaridine

3,3-(oxopropyl)dicoronaridine

C45H54N4O5 (730.4093994)


   
   

O2-Benzoyl,3-beta-D-Glucopranoside-(2alpha,3beta,5alpha,6beta,25R)-Spirostane-2,3,5,6-tetrol

O2-Benzoyl,3-beta-D-Glucopranoside-(2alpha,3beta,5alpha,6beta,25R)-Spirostane-2,3,5,6-tetrol

C40H58O12 (730.3928068)


   
   
   

1-[18-hydroxyoeoyl]-2-[18-hydroxy-lioleoyl]-sn-glycerol 3-phosphate

1-[18-hydroxyoeoyl]-2-[18-hydroxy-lioleoyl]-sn-glycerol 3-phosphate

C39H71O10P (730.4784596)


   

RVYFF

Arg-Val-Tyr-Phe-Phe

C38H50N8O7 (730.3802270000001)


   

PG(13:0/20:3(8Z,11Z,14Z))

1-tridecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(15:0/18:3(6Z,9Z,12Z))

1-pentadecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(15:0/18:3(9Z,12Z,15Z))

1-pentadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(15:1(9Z)/18:2(9Z,12Z))

1-(9Z-pentadecenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(16:1(9Z)/17:2(9Z,12Z))

1-(9Z-hexadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(17:2(9Z,12Z)/16:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(18:2(9Z,12Z)/15:1(9Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(18:3(6Z,9Z,12Z)/15:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(18:3(9Z,12Z,15Z)/15:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PG(20:3(8Z,11Z,14Z)/13:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PA(17:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z,12Z-heptadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C42H67O8P (730.4573312)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/17:2(9Z,12Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C42H67O8P (730.4573312)


   

PG 33:3

1-(9Z,12Z,15Z-octadecatrienoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C39H71O10P (730.4784596)


   

PA 39:8

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C42H67O8P (730.4573312)


   

Erythromycin A 9,11-Imino Ether

Erythromycin A 9,11-Imino Ether

C37H66N2O12 (730.4615516)


   

Erythromycin A 6,9-Imino Ether

Erythromycin A 6,9-Imino Ether

C37H66N2O12 (730.4615516)


   

DihydroaverMectin B1 Monosaccharide, IverMectin B1 Monosaccharide

DihydroaverMectin B1 Monosaccharide, IverMectin B1 Monosaccharide

C41H62O11 (730.4291902)


   

N-[(4S,5S,7R)-8-({(S)-1-[(Benzylamino)oxomethyl]-2-methylpropyl}amino)-5-hydroxy-2,7-dimethyl-8-oxo-oct-4-YL]-(4S,7S)-4-isopropyl-2,5,9-trioxo-1-oxa-3,6,10-triazacyclohexadecane-7-carboxamide

N-[(4S,5S,7R)-8-({(S)-1-[(Benzylamino)oxomethyl]-2-methylpropyl}amino)-5-hydroxy-2,7-dimethyl-8-oxo-oct-4-YL]-(4S,7S)-4-isopropyl-2,5,9-trioxo-1-oxa-3,6,10-triazacyclohexadecane-7-carboxamide

C38H62N6O8 (730.4628892000001)


   

[(2R)-2-[(9Z,12Z)-18-hydroxyoctadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-18-hydroxyoctadec-9-enoate

[(2R)-2-[(9Z,12Z)-18-hydroxyoctadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (Z)-18-hydroxyoctadec-9-enoate

C39H71O10P (730.4784596)


   
   
   
   
   
   
   
   
   
   
   
   
   

PA(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C39H71O10P (730.4784596)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/16:0)

C39H71O10P (730.4784596)


   

PA(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-16:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C39H71O10P (730.4784596)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-16:0)

C39H71O10P (730.4784596)


   

PG(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PG(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C38H67O11P (730.4420762)


   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PG(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C38H67O11P (730.4420762)


   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

PG(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

C38H67O11P (730.4420762)


   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

PG(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

C38H67O11P (730.4420762)


   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PG(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C38H67O11P (730.4420762)


   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PG(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PG(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PG(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PG(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C38H67O11P (730.4420762)


   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

C38H67O11P (730.4420762)


   

PG(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PG(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C38H67O11P (730.4420762)


   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

C38H67O11P (730.4420762)


   

PA(15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C38H67O11P (730.4420762)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/15:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/15:0)

C38H67O11P (730.4420762)


   

PA(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

PA(18:2(9Z,11Z)/18:1(12Z)-2OH(9,10))

C39H71O10P (730.4784596)


   

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,11Z))

C39H71O10P (730.4784596)


   

PA(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

PA(18:2(9Z,12Z)/18:1(12Z)-2OH(9,10))

C39H71O10P (730.4784596)


   

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

PA(18:1(12Z)-2OH(9,10)/18:2(9Z,12Z))

C39H71O10P (730.4784596)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(18:4(6Z,9Z,12Z,15Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C41H63O9P (730.4209478)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/18:4(6Z,9Z,12Z,15Z))

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   

PA(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(a-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C38H67O11P (730.4420762)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-15:0)

C38H67O11P (730.4420762)


   

PA(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(i-15:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C38H67O11P (730.4420762)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-15:0)

C38H67O11P (730.4420762)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C41H63O9P (730.4209478)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/18:4(6Z,9Z,12Z,15Z))

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C41H63O9P (730.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:4(6Z,9Z,12Z,15Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C41H63O9P (730.4209478)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:4(6Z,9Z,12Z,15Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C41H63O9P (730.4209478)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:4(6Z,9Z,12Z,15Z))

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(18:4(6Z,9Z,12Z,15Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C41H63O9P (730.4209478)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:4(6Z,9Z,12Z,15Z))

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/18:4(6Z,9Z,12Z,15Z))

C41H63O9P (730.4209478)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] decanoate

C37H63O12P (730.4056928)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C37H63O12P (730.4056928)


   
   
   
   
   
   
   
   

[6-[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H71O10P (730.4784596)


   

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H71O10P (730.4784596)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H71O10P (730.4784596)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H71O10P (730.4784596)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-heptadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-heptadec-9-enoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H67O8P (730.4573312)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H71O10P (730.4784596)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] heptadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] heptadecanoate

C39H71O10P (730.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoate

C40H59O10P (730.3845644)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C42H66O10 (730.4655736000001)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (14E,17E,20E)-tricosa-14,17,20-trienoate

C42H67O8P (730.4573312)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2S,3S,6S)-6-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

C42H67O8P (730.4573312)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H71O10P (730.4784596)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-heptadec-7-enoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-heptadec-7-enoate

C39H71O10P (730.4784596)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H67O8P (730.4573312)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H71O10P (730.4784596)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H71O10P (730.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C39H71O10P (730.4784596)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H71O10P (730.4784596)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] heptadecanoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] heptadecanoate

C39H71O10P (730.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H71O10P (730.4784596)


   

[(2S,3S,6S)-6-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H71O10P (730.4784596)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C42H66O10 (730.4655736000001)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[(2S,3S,6S)-6-[3-dodecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-dodecanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H67O8P (730.4573312)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C39H71O10P (730.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C39H71O10P (730.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H71O10P (730.4784596)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

C42H67O8P (730.4573312)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H62O12S (730.3961772)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C42H67O8P (730.4573312)


   

phosphatidylserine 32:2(1-)

phosphatidylserine 32:2(1-)

C38H69NO10P (730.4658843999999)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 2 double bonds.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-(hydroxymethyl)-4-methoxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-(hydroxymethyl)-4-methoxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

1-{8a-[(acetyloxy)methyl]-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl 3-{5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl propanedioate

1-{8a-[(acetyloxy)methyl]-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl 3-{5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl}methyl propanedioate

C45H62O8 (730.4444452)


   

5-[(2-hydroxy-3-methylbutanoyl)oxy]-7-(2-hydroxypropan-2-yl)-6-(3-methoxy-3-oxopropyl)-3a,6,9a-trimethyl-3-[5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-9-yl 2-hydroxy-3-methylpent-3-enoate

5-[(2-hydroxy-3-methylbutanoyl)oxy]-7-(2-hydroxypropan-2-yl)-6-(3-methoxy-3-oxopropyl)-3a,6,9a-trimethyl-3-[5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-9-yl 2-hydroxy-3-methylpent-3-enoate

C42H66O10 (730.4655736000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H62O11 (730.4291902)


   

6-hydroxy-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e,19e,21e)-23-hydroxy-3,7,12,16,20,24-hexamethyl-24-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e,19e,21e)-23-hydroxy-3,7,12,16,20,24-hexamethyl-24-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl]-2,4,4-trimethylcyclohex-2-en-1-one

C45H62O8 (730.4444452)


   

(3s,3as,5r,5ar,6r,7r,9r,9ar)-5-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-7-(2-hydroxypropan-2-yl)-6-(3-methoxy-3-oxopropyl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-9-yl (2r,3e)-2-hydroxy-3-methylpent-3-enoate

(3s,3as,5r,5ar,6r,7r,9r,9ar)-5-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-7-(2-hydroxypropan-2-yl)-6-(3-methoxy-3-oxopropyl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-9-yl (2r,3e)-2-hydroxy-3-methylpent-3-enoate

C42H66O10 (730.4655736000001)


   

(2s,3s,4s,6s)-2-{[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-4-(acetyloxy)-6-methyloxan-3-yl acetate

(2s,3s,4s,6s)-2-{[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-4-(acetyloxy)-6-methyloxan-3-yl acetate

C40H58O12 (730.3928068)


   

(1r,3s,3as,3br,5r,5as,6r,7s,9ar,9bs,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,5s)-5-{[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6-triol

(1r,3s,3as,3br,5r,5as,6r,7s,9ar,9bs,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,5s)-5-{[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6-triol

C38H66O13 (730.4503186000001)


   

(3s,6r,9s,12s,15r,20ar)-3,15-dibenzyl-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20ar)-3,15-dibenzyl-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C41H58N6O6 (730.4417608000001)


   

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4r,5s)-5-({[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4r,5s)-5-({[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

(1r,3r,3as,3br,5s,5as,6r,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6,7-tetrol

(1r,3r,3as,3br,5s,5as,6r,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6,7-tetrol

C38H66O13 (730.4503186000001)


   

(1r,2r,3s,7s,8r,10r,11r,15s,16s,17r)-3-(acetyloxy)-15-(furan-3-yl)-10-{[(2r,3r)-2-hydroxy-3-methylpentanoyl]oxy}-7-(hydroxymethyl)-2,7,11,16-tetramethyl-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-17-yl (2r,3s)-2-hydroxy-3-methylpentanoate

(1r,2r,3s,7s,8r,10r,11r,15s,16s,17r)-3-(acetyloxy)-15-(furan-3-yl)-10-{[(2r,3r)-2-hydroxy-3-methylpentanoyl]oxy}-7-(hydroxymethyl)-2,7,11,16-tetramethyl-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-17-yl (2r,3s)-2-hydroxy-3-methylpentanoate

C40H58O12 (730.3928068)


   

(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H62O11 (730.4291902)


   

1-[5-({3-[(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy]-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl}oxy)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

1-[5-({3-[(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy]-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl}oxy)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

1-{5-[(5-{[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]methyl}-3,4-dihydroxyoxolan-2-yl)oxy]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

1-{5-[(5-{[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]methyl}-3,4-dihydroxyoxolan-2-yl)oxy]-6-methylheptan-2-yl}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

6-hydroxy-3-{23-hydroxy-3,7,12,16,20,24-hexamethyl-24-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl}-2,4,4-trimethylcyclohex-2-en-1-one

6-hydroxy-3-{23-hydroxy-3,7,12,16,20,24-hexamethyl-24-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaen-1-yl}-2,4,4-trimethylcyclohex-2-en-1-one

C45H62O8 (730.4444452)


   

3,15-dibenzyl-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

3,15-dibenzyl-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C41H58N6O6 (730.4417608000001)


   

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-(hydroxymethyl)-4-methoxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-(hydroxymethyl)-4-methoxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl benzoate

18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl benzoate

C40H58O12 (730.3928068)


   

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methyldodecylidene)amino]pentanediimidic acid

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methyldodecylidene)amino]pentanediimidic acid

C38H58N4O10 (730.4152728)


   

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-(5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6-triol

7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-(5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6-triol

C38H66O13 (730.4503186000001)


   

1-[(4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 3-[(4ar,5s,6r,8as)-8a-[(acetyloxy)methyl]-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl propanedioate

1-[(4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl 3-[(4ar,5s,6r,8as)-8a-[(acetyloxy)methyl]-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methyl propanedioate

C45H62O8 (730.4444452)


   

(1's,2r,4s,4'r,5s,6r,9's,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-4,9'-dihydroxy-15'-{[(2r,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,6',10',14',16'-pentamethyl-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione

(1's,2r,4s,4'r,5s,6r,9's,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-4,9'-dihydroxy-15'-{[(2r,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-5,6',10',14',16'-pentamethyl-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione

C41H62O11 (730.4291902)


   

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-14-methyl-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

(2r,3as,5ar,5bs,9r,13s,14r,16as,16br)-9-[(1e)-but-1-en-1-yl]-13-{[(2r,5s,6r)-5-hydroxy-6-methyloxan-2-yl]oxy}-14-methyl-2-{[(2r,3r,4r,5s,6s)-3,4,5-trimethoxy-6-methyloxan-2-yl]oxy}-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C41H62O11 (730.4291902)


   

(3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

(3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H62O11 (730.4291902)


   

1-[5-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl}oxy)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6,7-tetrol

1-[5-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl}oxy)-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-3,5,6,7-tetrol

C38H66O13 (730.4503186000001)


   

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methyldodecylidene)amino]pentanediimidic acid

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methyldodecylidene)amino]pentanediimidic acid

C38H58N4O10 (730.4152728)


   

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-9-{[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy}-5-{[(2r,3r)-2-hydroxy-3-methylpentanoyl]oxy}-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-9-{[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy}-5-{[(2r,3r)-2-hydroxy-3-methylpentanoyl]oxy}-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

C42H66O10 (730.4655736000001)


   

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2s,3s,4r,5r)-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3s,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2s,3s,4r,5r)-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-methoxyoxan-2-yl]oxy}-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)


   

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,15'r,16'r,18'r,19'r)-18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl benzoate

(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,15'r,16'r,18'r,19'r)-18',19'-dihydroxy-5,7',9',13'-tetramethyl-15'-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-16'-yl benzoate

C40H58O12 (730.3928068)


   

4-(acetyloxy)-2-{[1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyloxan-3-yl acetate

4-(acetyloxy)-2-{[1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyloxan-3-yl acetate

C40H58O12 (730.3928068)


   

6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl 2-[2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl 2-[2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H62O11 (730.4291902)


   

(3s,6r,9s,12s,15r,20as)-3,15-dibenzyl-9-[(2s)-butan-2-yl]-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20as)-3,15-dibenzyl-9-[(2s)-butan-2-yl]-1,4,7,10,13-pentahydroxy-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C41H58N6O6 (730.4417608000001)


   

3-(acetyloxy)-15-(furan-3-yl)-10-[(2-hydroxy-3-methylpentanoyl)oxy]-7-(hydroxymethyl)-2,7,11,16-tetramethyl-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-17-yl 2-hydroxy-3-methylpentanoate

3-(acetyloxy)-15-(furan-3-yl)-10-[(2-hydroxy-3-methylpentanoyl)oxy]-7-(hydroxymethyl)-2,7,11,16-tetramethyl-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadec-12-en-17-yl 2-hydroxy-3-methylpentanoate

C40H58O12 (730.3928068)


   

9-(but-1-en-1-yl)-13-[(5-hydroxy-6-methyloxan-2-yl)oxy]-14-methyl-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

9-(but-1-en-1-yl)-13-[(5-hydroxy-6-methyloxan-2-yl)oxy]-14-methyl-2-[(3,4,5-trimethoxy-6-methyloxan-2-yl)oxy]-1h,2h,3h,3ah,5ah,5bh,6h,9h,10h,11h,12h,13h,14h,16ah,16bh-as-indaceno[3,2-d]oxacyclododecane-7,15-dione

C41H62O11 (730.4291902)


   

4,9'-dihydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione

4,9'-dihydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-2',20'-dioxaspiro[oxane-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraene-3',7'-dione

C41H62O11 (730.4291902)


   

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-({[(2s,3s,4s,5s)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,5s)-5-{[(2r,3r,4s,5s)-5-({[(2s,3s,4s,5s)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H66O13 (730.4503186000001)