Exact Mass: 728.4112

Exact Mass Matches: 728.4112

Found 149 metabolites which its exact mass value is equals to given mass value 728.4112, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Avermectin A1b monosaccharide

Avermectin A1b monosaccharide

C41H60O11 (728.4135)


   

Avermectin MS

Avermectin B1a monosaccharide

C41H60O11 (728.4135)


   

Boc-phepsi(CH(OH)CH2)phe-val-phe-morpholine

2-Benzyl-5-{[(tert-butoxy)(hydroxy)methylidene]amino}-4-hydroxy-N-(2-methyl-1-{[1-(morpholin-4-yl)-1-oxo-3-phenylpropan-2-yl]-C-hydroxycarbonimidoyl}propyl)-6-phenylhexanimidate

C42H56N4O7 (728.4149)


   

PA(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-(pentadecanoyloxy)-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0)

[(2R)-2-(pentadecanoyloxy)-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxy}propoxy]phosphonic acid

C38H65O11P (728.4264)


PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C38H65O11P (728.4264)


PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

3'-O-beta-D-glucopyranosyl-2'-O-isovaleryl-2beta-(2-desoxy-atractyligenin)-beta-D-glucopyranoside

(1R,4R,5R,7R,9R,10S,13R,15S)-15-hydroxy-7-{[(2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carboxylic acid

C36H56O15 (728.3619)


   

Daedaleaside C

Daedaleaside C

C41H60O11 (728.4135)


   
   
   

Argentinic acid H

Argentinic acid H

C42H64O10 (728.4499)


   

4-deoleandrosyl-6,8a-seco-6,8a-deoxyavermectin A1a

4-deoleandrosyl-6,8a-seco-6,8a-deoxyavermectin A1a

C42H64O10 (728.4499)


   

bisrubescensin C

bisrubescensin C

C40H56O12 (728.3772)


   
   
   
   

(1beta,2alpha,3beta)-2,3-Bis(4-hydroxybenzoyl):1,2,3-Trihydroxy-14-taraxeren-28-oic acid

(1beta,2alpha,3beta)-2,3-Bis(4-hydroxybenzoyl):1,2,3-Trihydroxy-14-taraxeren-28-oic acid

C44H56O9 (728.3924)


   

Gly-Leu-Leu-Ser-Gly-Leu-Gly-Leu

Gly-Leu-Leu-Ser-Gly-Leu-Gly-Leu

C33H60N8O10 (728.4432)


   

3?-O-beta-D-glucopyranosyl-2?-O-isovaleryl-2beta-(2-desoxy-atractyligenin)-beta-D-glucopyranoside

3?-O-beta-D-glucopyranosyl-2?-O-isovaleryl-2beta-(2-desoxy-atractyligenin)-beta-D-glucopyranoside

C36H56O15 (728.3619)


   

glucosylfrugoside

glucosylfrugoside

C36H56O15 (728.3619)


   

2??,3??-(22R)-Trihydroxycholestan-6-one-22-O-??-D-glucopyranosyl-(1鈥樏傗垎2)-??-L-arabinopyranoside

2??,3??-(22R)-Trihydroxycholestan-6-one-22-O-??-D-glucopyranosyl-(1鈥樏傗垎2)-??-L-arabinopyranoside

C38H64O13 (728.4347)


   

(22S)-1beta-[(beta-D-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-16beta-yl beta-D-apiofuranoside

(22S)-1beta-[(beta-D-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-16beta-yl beta-D-apiofuranoside

C38H64O13 (728.4347)


   

Ouabain

Ouabain Octahydrate

C29H60O20 (728.3678)


Ouabain Octahydrate is an inhibitor of Na+/K+-ATPase, used for the treatment of congestive heart failure. Ouabain Octahydrate is an inhibitor of Na+/K+-ATPase, used for the treatment of congestive heart failure.

   

P-TolyltriPhenylPhosPhonium tetra-P-tolylborate

P-TolyltriPhenylPhosPhonium tetra-P-tolylborate

C53H50BP (728.3743)


   

Tin(II) ionophore III

Tin(II) ionophore III

C48H48N4O3 (728.3726)


   

tert-butyl N-[5-benzyl-3-hydroxy-6-[[3-methyl-1-[(1-morpholin-4-yl-1-oxo-3-phenylpropan-2-yl)amino]-1-oxobutan-2-yl]amino]-6-oxo-1-phenylhexan-2-yl]carbamate

tert-butyl N-[5-benzyl-3-hydroxy-6-[[3-methyl-1-[(1-morpholin-4-yl-1-oxo-3-phenylpropan-2-yl)amino]-1-oxobutan-2-yl]amino]-6-oxo-1-phenylhexan-2-yl]carbamate

C42H56N4O7 (728.4149)


   

[(2S,3R,4S,6R)-2-[[(1R,2S,3R,6E,8S,9S,10S,12R,14E,16S)-3-ethyl-2-hydroxy-2-[[(2R,3R,4R,5R,6R)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxymethyl]-8,10,12-trimethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadeca-6,14-dien-9-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium

[(2S,3R,4S,6R)-2-[[(1R,2S,3R,6E,8S,9S,10S,12R,14E,16S)-3-ethyl-2-hydroxy-2-[[(2R,3R,4R,5R,6R)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxymethyl]-8,10,12-trimethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadeca-6,14-dien-9-yl]oxy]-3-hydroxy-6-methyloxan-4-yl]-dimethylazanium

C37H62NO13+ (728.4221)


   

PG(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PG(i-12:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C38H65O11P (728.4264)


   

PG(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

PG(20:4(6E,8Z,11Z,14Z)+=O(5)/i-12:0)

C38H65O11P (728.4264)


   

PG(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PG(i-12:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C38H65O11P (728.4264)


   

PG(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

PG(20:4(5Z,8Z,11Z,13E)+=O(15)/i-12:0)

C38H65O11P (728.4264)


   

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C38H65O11P (728.4264)


   

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-12:0)

C38H65O11P (728.4264)


   

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PG(i-12:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65O11P (728.4264)


   

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

PG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-12:0)

C38H65O11P (728.4264)


   

PG(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PG(i-12:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C38H65O11P (728.4264)


   

PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

PG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-12:0)

C38H65O11P (728.4264)


   

PG(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PG(i-12:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C38H65O11P (728.4264)


   

PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

PG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-12:0)

C38H65O11P (728.4264)


   

PA(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C38H65O11P (728.4264)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0)

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/15:0)

C38H65O11P (728.4264)


   

PA(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(a-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C38H65O11P (728.4264)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/a-15:0)

C38H65O11P (728.4264)


   

PA(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

PA(i-15:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C38H65O11P (728.4264)


   

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-15:0)

C38H65O11P (728.4264)


   

3-O-beta-D-glucopyranosyl-2-O-isovaleryl-2beta-(2-desoxy-atractyligenin)-beta-D-glucopyranoside

3-O-beta-D-glucopyranosyl-2-O-isovaleryl-2beta-(2-desoxy-atractyligenin)-beta-D-glucopyranoside

C36H56O15 (728.3619)


   

Smgdg O-22:6_6:0

Smgdg O-22:6_6:0

C37H60O12S (728.3805)


   

Smgdg O-26:6_2:0

Smgdg O-26:6_2:0

C37H60O12S (728.3805)


   

Smgdg O-24:6_4:0

Smgdg O-24:6_4:0

C37H60O12S (728.3805)


   

Dgdg O-18:5_4:0

Dgdg O-18:5_4:0

C37H60O14 (728.3983)


   

Dgdg O-20:5_2:0

Dgdg O-20:5_2:0

C37H60O14 (728.3983)


   
   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C36H56O15 (728.3619)


   

PMeOH 16:3_22:6

PMeOH 16:3_22:6

C42H65O8P (728.4417)


   

PMeOH 16:4_22:5

PMeOH 16:4_22:5

C42H65O8P (728.4417)


   

PMeOH 20:4_18:5

PMeOH 20:4_18:5

C42H65O8P (728.4417)


   

PMeOH 18:4_20:5

PMeOH 18:4_20:5

C42H65O8P (728.4417)


   

3-[(1S,3R,5S,8R,9S,10R,11R,13R,14S,17S)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3S,4R,5R,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one;octahydrate

3-[(1S,3R,5S,8R,9S,10R,11R,13R,14S,17S)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3S,4R,5R,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one;octahydrate

C29H60O20 (728.3678)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C42H64O10 (728.4499)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoate

C42H65O8P (728.4417)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoate

C42H65O8P (728.4417)


   

[(2S,3S,6S)-6-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H60O12S (728.3805)


   

[(2S,3S,6S)-6-[3-dodecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-dodecanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H60O12S (728.3805)


   

[(2S,3S,6S)-6-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H60O12S (728.3805)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoate

C42H65O8P (728.4417)


   

[(2S,3S,6S)-6-[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H60O12S (728.3805)


   

phosphatidylserine 32:3(1-)

phosphatidylserine 32:3(1-)

C38H67NO10P (728.4502)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 3 double bonds.

   

DGDG O-21:6;O

DGDG O-21:6;O

C36H56O15 (728.3619)


   
   

MGDG O-33:9;O

MGDG O-33:9;O

C42H64O10 (728.4499)


   

SMGDG O-26:0;O

SMGDG O-26:0;O

C35H68O13S (728.438)


   
   
   
   
   
   

HBMP 31:5;O

HBMP 31:5;O

C37H61O12P (728.39)


   
   

PG 18:2/13:4;O2

PG 18:2/13:4;O2

C37H61O12P (728.39)


   

PG 18:3/13:3;O2

PG 18:3/13:3;O2

C37H61O12P (728.39)


   
   

PG 22:2/9:4;O2

PG 22:2/9:4;O2

C37H61O12P (728.39)


   

PG 22:5/9:1;O2

PG 22:5/9:1;O2

C37H61O12P (728.39)


   
   
   

PI O-16:0/8:2;O3

PI O-16:0/8:2;O3

C33H61O15P (728.3748)


   

PI O-16:0/9:1;O2

PI O-16:0/9:1;O2

C34H65O14P (728.4112)


   

PI O-20:0/5:1;O2

PI O-20:0/5:1;O2

C34H65O14P (728.4112)


   
   
   
   
   
   
   
   
   
   
   

(1r,3ar,5r,5ar,5br,7ar,9s,11as,11br,12r,13ar,13bs)-9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

(1r,3ar,5r,5ar,5br,7ar,9s,11as,11br,12r,13ar,13bs)-9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

C45H60O8 (728.4288)


   

2-[(2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxypropylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]-4-methylpentanoic acid

2-[(2-{[2-({2-[(2-{[2-({2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxypropylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]-4-methylpentanoic acid

C33H60N8O10 (728.4432)


   

(1s,1's,2s,2's,5s,5'r,8'r,9s,9's,10's,11'r,12r,13s,14s,15r,15's,18'r,19s,22r)-9',10',13,14,15',18',19,22-octahydroxy-12',12',16,16-tetramethyl-10,17',21-trioxaspiro[hexacyclo[11.6.2.1⁵,¹².0¹,¹⁵.0²,¹².0⁶,¹¹]docosane-9,6'-pentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-6(11)-en-7'-one

(1s,1's,2s,2's,5s,5'r,8'r,9s,9's,10's,11'r,12r,13s,14s,15r,15's,18'r,19s,22r)-9',10',13,14,15',18',19,22-octahydroxy-12',12',16,16-tetramethyl-10,17',21-trioxaspiro[hexacyclo[11.6.2.1⁵,¹².0¹,¹⁵.0²,¹².0⁶,¹¹]docosane-9,6'-pentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-6(11)-en-7'-one

C40H56O12 (728.3772)


   

2-[(2s,8s,11s,14r,17s)-17-[(2r)-butan-2-yl]-3,6,9,12,15,18-hexahydroxy-8-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[(2s,8s,11s,14r,17s)-17-[(2r)-butan-2-yl]-3,6,9,12,15,18-hexahydroxy-8-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-11,14-bis(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C35H52N8O9 (728.3857)


   

(2s)-2-[(2-{[(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxypropylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]-4-methylpentanoic acid

(2s)-2-[(2-{[(2s)-2-[(2-{[(2s)-2-{[(2s)-2-{[(2s)-2-[(2-amino-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-1,3-dihydroxypropylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxy-4-methylpentylidene]amino}-1-hydroxyethylidene)amino]-4-methylpentanoic acid

C33H60N8O10 (728.4432)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-2-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3bs,7r,9r,9ar,9bs,11as)-2-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-1-[(2s,3s)-3-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-9-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C38H64O13 (728.4347)


   

2α,3β-(22r)-trihydroxycholestan-6-one-22-o-β-d-glucopyranosyl-(1→2)-α-l-arabinopyra-noside

NA

C38H64O13 (728.4347)


{"Ingredient_id": "HBIN005201","Ingredient_name": "2\u03b1,3\u03b2-(22r)-trihydroxycholestan-6-one-22-o-\u03b2-d-glucopyranosyl-(1\u21922)-\u03b1-l-arabinopyra-noside","Alias": "NA","Ingredient_formula": "C38H64O13","Ingredient_Smile": "CC(C)CCC(C(C)C1CCC2C1(CCC3C2CC(=O)C4C3(CC(C(C4)O)O)C)C)OC5C(C(C(CO5)O)O)OC6C(C(C(C(O6)CO)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21679","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2R, 4R)-p-Mentha-[ 1(7), 8]-diene, 2-hydroperoxide

NA

C36H76O5Si5 (728.4539)


{"Ingredient_id": "HBIN006513","Ingredient_name": "(2R, 4R)-p-Mentha-[ 1(7), 8]-diene, 2-hydroperoxide","Alias": "NA","Ingredient_formula": "C36H76O5Si5","Ingredient_Smile": "CC12CCC(CC1CCC3C2C(CC4(C3CCC4(C(CO[Si](C)(C)C)O[Si](C)(C)C)O[Si](C)(C)C)C)O[Si](C)(C)C)O[Si](C)(C)C","Ingredient_weight": "729.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41055","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "6431515","DrugBank_id": "NA"}

   

(3e,5e,7s,8s,11e,13e,15s,16s)-8,16-bis[(2s,3r,4s,6e,8s,9r)-8-ethyl-3,9-dihydroxy-4-methyl-5-oxodec-6-en-2-yl]-7,15-dimethyl-1,9-dioxacyclohexadeca-3,5,11,13-tetraene-2,10-dione

(3e,5e,7s,8s,11e,13e,15s,16s)-8,16-bis[(2s,3r,4s,6e,8s,9r)-8-ethyl-3,9-dihydroxy-4-methyl-5-oxodec-6-en-2-yl]-7,15-dimethyl-1,9-dioxacyclohexadeca-3,5,11,13-tetraene-2,10-dione

C42H64O10 (728.4499)


   

(1s)-7-(2-{[(1r)-6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}-4,5-dimethoxyphenoxy)-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

(1s)-7-(2-{[(1r)-6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}-4,5-dimethoxyphenoxy)-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

C42H52N2O9 (728.3673)


   

9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

C45H60O8 (728.4288)


   

6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl 2-[2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl 2-[2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H60O11 (728.4135)


   

2-[3,6,9,12,15,18-hexahydroxy-8-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-11,14-bis(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

2-[3,6,9,12,15,18-hexahydroxy-8-(2-{2-[(hydroxymethylidene)amino]phenyl}-2-oxoethyl)-11,14-bis(2-methylpropyl)-17-(sec-butyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1(18),3,6,9,12,15-hexaen-2-yl]ethanimidic acid

C35H52N8O9 (728.3857)


   

(1r,3ar,5s,5ar,5br,7ar,9s,11as,11br,12r,13ar,13br)-9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

(1r,3ar,5s,5ar,5br,7ar,9s,11as,11br,12r,13ar,13br)-9-hydroxy-5-(4-hydroxybenzoyloxy)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-12-yl 4-hydroxy-3-methoxybenzoate

C45H60O8 (728.4288)


   

(1's,2s,4'r,5s,6r,7's,9's,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-9'-hydroxy-15'-{[(2r,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-7'-methoxy-5,6',10',14',16'-pentamethyl-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

(1's,2s,4'r,5s,6r,7's,9's,10'e,12'e,14's,15's,16'e,19'r)-6-[(2s)-butan-2-yl]-9'-hydroxy-15'-{[(2r,4s,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-7'-methoxy-5,6',10',14',16'-pentamethyl-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

C42H64O10 (728.4499)


   

(1s,3as,3br,5as,7r,8r,9ar,9bs,11ar)-1-[(2s,3s)-3-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methylheptan-2-yl]-7,8-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-one

(1s,3as,3br,5as,7r,8r,9ar,9bs,11ar)-1-[(2s,3s)-3-{[(2r,3s,4r,5s)-4,5-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6-methylheptan-2-yl]-7,8-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-one

C38H64O13 (728.4347)


   

7-{2-[(6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)methyl]-4,5-dimethoxyphenoxy}-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

7-{2-[(6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)methyl]-4,5-dimethoxyphenoxy}-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

C42H52N2O9 (728.3673)


   

2-[(8-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C38H56N4O10 (728.3996)


   

28-hydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

28-hydroxy-4,20-bis(3-hydroxy-2-methylhex-4-en-2-yl)-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

C42H52N2O9 (728.3673)


   

(10'z,12'z,16'z)-9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-7'-methoxy-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

(10'z,12'z,16'z)-9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-7'-methoxy-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

C42H64O10 (728.4499)


   

(4s,6z,8z,10e,12z,20s,22z,24z,26e,28r)-28-hydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

(4s,6z,8z,10e,12z,20s,22z,24z,26e,28r)-28-hydroxy-4,20-bis[(3s,4e)-3-hydroxy-2-methylhex-4-en-2-yl]-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

C42H52N2O9 (728.3673)


   

(6z,8z,10z,12z,22z,24z,26z)-28-hydroxy-4,20-bis[(4e)-3-hydroxy-2-methylhex-4-en-2-yl]-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

(6z,8z,10z,12z,22z,24z,26z)-28-hydroxy-4,20-bis[(4e)-3-hydroxy-2-methylhex-4-en-2-yl]-3,15,19,31-tetraoxa-33,34-diazatricyclo[28.2.1.1¹⁴,¹⁷]tetratriaconta-1(32),6,8,10,12,14(34),16,22,24,26,30(33)-undecaene-2,18-dione

C42H52N2O9 (728.3673)


   

9',10',13,14,15',18',19,22-octahydroxy-12',12',16,16-tetramethyl-10,17',21-trioxaspiro[hexacyclo[11.6.2.1⁵,¹².0¹,¹⁵.0²,¹².0⁶,¹¹]docosane-9,6'-pentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-6(11)-en-7'-one

9',10',13,14,15',18',19,22-octahydroxy-12',12',16,16-tetramethyl-10,17',21-trioxaspiro[hexacyclo[11.6.2.1⁵,¹².0¹,¹⁵.0²,¹².0⁶,¹¹]docosane-9,6'-pentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan]-6(11)-en-7'-one

C40H56O12 (728.3772)


   

(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H60O11 (728.4135)


   

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-5,9-bis({[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy})-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-5,9-bis({[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy})-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

C42H64O10 (728.4499)


   

1-[5-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

1-[5-({3-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H64O13 (728.4347)


   

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C38H56N4O10 (728.3996)


   

1-{3-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methylheptan-2-yl}-7,8-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-one

1-{3-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6-methylheptan-2-yl}-7,8-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-5-one

C38H64O13 (728.4347)


   

(3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

(3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl (2r)-2-[(1r,2r,3ar,5ar,9as,11ar)-2-(acetyloxy)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-6-methyl-5-methylideneheptanoate

C41H60O11 (728.4135)


   

9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-7'-methoxy-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

9'-hydroxy-15'-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-7'-methoxy-5,6',10',14',16'-pentamethyl-6-(sec-butyl)-5,6-dihydro-2',20'-dioxaspiro[pyran-2,21'-tricyclo[17.3.1.0⁴,⁹]tricosane]-5',10',12',16'-tetraen-3'-one

C42H64O10 (728.4499)


   

(1r,4r,5r,7r,9r,10s,13r,15s)-15-hydroxy-7-{[(3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1r,4r,5r,7r,9r,10s,13r,15s)-15-hydroxy-7-{[(3r,4s,5r,6r)-5-hydroxy-6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C36H56O15 (728.3619)


   

(1r)-7-(5-{[(1s)-6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}-2,3-dimethoxyphenoxy)-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

(1r)-7-(5-{[(1s)-6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}-2,3-dimethoxyphenoxy)-1-[(3,4-dimethoxyphenyl)methyl]-5,6-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline

C42H52N2O9 (728.3673)


   

2-[(2-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-9-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-1-(3-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-9-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C38H64O13 (728.4347)


   

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,3e,5r)-5-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

(1r,3r,3as,3bs,5s,5as,7s,9as,9br,11ar)-1-[(2r,3e,5r)-5-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,7-tetrol

C38H64O13 (728.4347)