Exact Mass: 727.539

Exact Mass Matches: 727.539

Found 500 metabolites which its exact mass value is equals to given mass value 727.539, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(14:0/18:3(9Z,12Z,15Z))

trimethyl(2-{[(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(14:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

Cerebroside B

2-Hydroxy-N-[(4E,8E)-3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanimidate

C41H77NO9 (727.5598)


Cerebroside B is found in mushrooms. Cerebroside B is from Clitocybe specie From Clitocybe subspecies Cerebroside B is found in mushrooms.

   

PC(14:0/18:3(6Z,9Z,12Z))

trimethyl(2-{[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(14:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:1(9Z)/18:2(9Z,12Z))

trimethyl(2-{[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(14:1(9Z)/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/18:2(9Z,12Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:2(9Z,12Z)/14:1(9Z))

trimethyl(2-{[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(18:2(9Z,12Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/14:1(9Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:2(9Z,12Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/14:1(9Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(6Z,9Z,12Z)/14:0)

trimethyl(2-{[(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(18:3(6Z,9Z,12Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/14:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:3(6Z,9Z,12Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/14:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(9Z,12Z,15Z)/14:0)

trimethyl(2-{[(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H74NO8P (727.5152)


PC(18:3(9Z,12Z,15Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/14:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PE(15:0/20:3(5Z,8Z,11Z))

(2-aminoethoxy)[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO8P (727.5152)


PE(15:0/20:3(5Z,8Z,11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of mead acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(15:0/20:3(8Z,11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO8P (727.5152)


PE(15:0/20:3(8Z,11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(11Z)/P-18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(18:1(11Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/P-18:1(11Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(11Z)/P-18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(18:1(11Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/P-18:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(9Z)/P-18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(18:1(9Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/P-18:1(11Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:1(9Z)/P-18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(18:1(9Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/P-18:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(18:2(9Z,12Z)/P-18:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-octadec-1-en-1-yloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(18:2(9Z,12Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/P-18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The linoleic acid moiety is derived from seed oils, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(18:2(9Z,12Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/P-18:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The linoleic acid moiety is derived from seed oils, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:2(11Z,14Z)/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1Z)-hexadec-1-en-1-yloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(20:2(11Z,14Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-16:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:2(11Z,14Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-16:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:3(5Z,8Z,11Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO8P (727.5152)


PE(20:3(5Z,8Z,11Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/15:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:3(5Z,8Z,11Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(5Z,8Z,11Z)/15:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:3(8Z,11Z,14Z)/15:0)

(2-aminoethoxy)[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H74NO8P (727.5152)


PE(20:3(8Z,11Z,14Z)/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:3(8Z,11Z,14Z)/15:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(P-16:0/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-16:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-16:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:0/18:2(9Z,12Z))

(2-aminoethoxy)[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-18:0/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:2(9Z,12Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of linoleic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/18:2(9Z,12Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of linoleic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(11Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-18:1(11Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:1(11Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of vaccenic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:1(11Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-18:1(11Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(9Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-18:1(9Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:1(11Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of vaccenic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-18:1(9Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


PE(P-18:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/18:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of oleic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/20:3(5Z,8Z,11Z))

{2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(14:0/20:3(5Z,8Z,11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(14:0/20:3(8Z,11Z,14Z))

{2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(14:0/20:3(8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/20:2(11Z,14Z))

{2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(14:1(9Z)/20:2(11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/18:3(6Z,9Z,12Z))

[3-(hexadecanoyloxy)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(16:0/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/18:3(9Z,12Z,15Z))

[3-(hexadecanoyloxy)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(16:0/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/18:2(9Z,12Z))

{3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(16:1(9Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/18:2(9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(18:2(9Z,12Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/16:1(9Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/16:0)

[2-(hexadecanoyloxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(18:3(6Z,9Z,12Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/16:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/16:0)

[2-(hexadecanoyloxy)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(18:3(9Z,12Z,15Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/16:0), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:2(11Z,14Z)/14:1(9Z))

{3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(20:2(11Z,14Z)/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:2(11Z,14Z)/14:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(5Z,8Z,11Z)/14:0)

{3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(20:3(5Z,8Z,11Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(5Z,8Z,11Z)/14:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(8Z,11Z,14Z)/14:0)

{3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-(tetradecanoyloxy)propoxy}[2-(methylamino)ethoxy]phosphinic acid

C40H74NO8P (727.5152)


PE-NMe(20:3(8Z,11Z,14Z)/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(8Z,11Z,14Z)/14:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/18:3(6Z,9Z,12Z))

[2-(dimethylamino)ethoxy]({2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C40H74NO8P (727.5152)


PE-NMe2(15:0/18:3(6Z,9Z,12Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/18:3(9Z,12Z,15Z))

[2-(dimethylamino)ethoxy]({2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C40H74NO8P (727.5152)


PE-NMe2(15:0/18:3(9Z,12Z,15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:3(6Z,9Z,12Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C40H74NO8P (727.5152)


PE-NMe2(18:3(6Z,9Z,12Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(6Z,9Z,12Z)/15:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:3(9Z,12Z,15Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C40H74NO8P (727.5152)


PE-NMe2(18:3(9Z,12Z,15Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:3(9Z,12Z,15Z)/15:0), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

cis-resveratrol 2-C-glucoside

(2-{[(2R)-3-(dodecanoyloxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C40H74NO8P (727.5152)


   

Phosphatidylethanolamine 17:1-18:2

Phosphatidylethanolamine 17:1-18:2

C40H74NO8P (727.5152)


   

Phosphatidylethanolamine alkenyl 18:0-18:2

Phosphatidylethanolamine alkenyl 18:0-18:2

C41H78NO7P (727.5516)


   

Phosphatidylethanolamine alkenyl 18:1-18:1

Phosphatidylethanolamine alkenyl 18:1-18:1

C41H78NO7P (727.5516)


   

Phosphatidylethanolamine alkenyl 16:0-20:2

Phosphatidylethanolamine alkenyl 16:0-20:2

C41H78NO7P (727.5516)


   

1-O-beta-D-Galactopyranosyl-N-(2R-hydroxy-15-methylpalmitoyl)-sphinga-4E,8E-dienin

1-O-beta-D-Galactopyranosyl-N-(2R-hydroxy-15-methylpalmitoyl)-sphinga-4E,8E-dienin

C41H77NO9 (727.5598)


   

PC 32:3

1-tetradecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-sn-glycero-3-phosphocholine

C40H74NO8P (727.5152)


Found in mouse muscle; TwoDicalId=2500; MgfFile=160824_Muscle_normal_Neg_01_sute; MgfId=611

   

(2-aminoethoxy)[2-[octadec-9-enoyloxy]-3-[octadeca-1.11-dien-1-yloxy]propoxy]phosphinic acid

(2-aminoethoxy)[2-[octadec-9-enoyloxy]-3-[octadeca-1.11-dien-1-yloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


   

GlcCer(d15:2(4E,6E)/20:0(2OH))

N-(2-hydroxy-eicosanoyl)-1-beta-glucosyl-4E,6E-pentadecasphingadienine

C41H77NO9 (727.5598)


   

PC(14:0/18:3)[U]

3,5,8-Trioxa-4-phosphahexacosa-17,20,23-trien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotetradecyl)oxy]methyl]-, inner salt, 4-oxide, (Z,Z,Z)-

C40H74NO8P (727.5152)


   

Lecithin

1-alpha-linolenoyl-2-myristoyl-sn-glycero-3-phosphocholine

C40H74NO8P (727.5152)


   

PE(35:3)

1-homo-gamma-linolenoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(36:2)

1-(1-Enyl-palmitoyl)-2-eicosadienoyl-sn-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


   

PC(12:0/20:3(8Z,11Z,14Z))

1-dodecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphocholine

C40H74NO8P (727.5152)


   

PC(15:1(9Z)/17:2(9Z,12Z))

1-(9Z-pentadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C40H74NO8P (727.5152)


   

PC(17:2(9Z,12Z)/15:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C40H74NO8P (727.5152)


   

PC(20:3(8Z,11Z,14Z)/12:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-dodecanoyl-glycero-3-phosphocholine

C40H74NO8P (727.5152)


   

PC(P-16:0/17:2(9Z,12Z))

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C41H78NO7P (727.5516)


   

PE(15:1(9Z)/20:2(11Z,14Z))

1-(9Z-pentadecenoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(17:0/18:3(6Z,9Z,12Z))

1-heptadecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(17:0/18:3(9Z,12Z,15Z))

1-heptadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(17:1(9Z)/18:2(9Z,12Z))

1-(9Z-heptadecenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(17:2(9Z,12Z)/18:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(18:1(9Z)/17:2(9Z,12Z))

1-(9Z-octadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(18:2(9Z,12Z)/17:1(9Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(18:3(6Z,9Z,12Z)/17:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(18:3(9Z,12Z,15Z)/17:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(20:2(11Z,14Z)/15:1(9Z))

1-(11Z,14Z-eicosadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(O-18:0/18:3(6Z,9Z,12Z))

1-octadecyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


   

PE(O-18:0/18:3(9Z,12Z,15Z))

1-octadecyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


   

PE(O-16:0/20:3(8Z,11Z,14Z))

1-hexadecyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


   

cerebroside

2-hydroxy-N-[(4E,8E)-3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanamide

C41H77NO9 (727.5598)


   

PC O-33:3

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C41H78NO7P (727.5516)


   

PE 35:3

1-(9Z,12Z,15Z-octadecatrienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C40H74NO8P (727.5152)


   

PE(P-18:0/18:2)

(2-aminoethoxy)[(2R)-3-[(1Z)-octadec-1-en-1-yloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C41H78NO7P (727.5516)


   

HexCer 35:2;O3

N-(2R-hydroxy-hexadecanoyl)-1-beta-glucosyl-9-methyl-sphing-4E,8E-dienine

C41H77NO9 (727.5598)


   

Chrysogeside E

N-(2R-hydroxy-nonadecanoyl)-1-beta-D-glucopyranosyl-9-methyl-pentadecasphing-4E,8E-dienine

C41H77NO9 (727.5598)


A glucosylceramide isolated from Penicillium chrysogenum.

   

Cerebroside B

N-(2-hydroxy-hexadecanoyl)-1-beta-glucosyl-9-methyl-sphinga-4E,8E-dienine

C41H77NO9 (727.5598)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[8-[3-[(Z)-oct-2-enyl]oxiran-2-yl]octanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[8-[3-[(Z)-oct-2-enyl]oxiran-2-yl]octanoylamino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S,3R,4E,8Z)-3-hydroxy-2-[[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-azaniumylethyl (2R)-2-{[(9Z,12Z)-octadeca-9,12-dienoyl]oxy}-3-{[(1Z)-octadec-1-en-1-yl]oxy}propyl phosphate

2-azaniumylethyl (2R)-2-{[(9Z,12Z)-octadeca-9,12-dienoyl]oxy}-3-{[(1Z)-octadec-1-en-1-yl]oxy}propyl phosphate

C41H78NO7P (727.5516)


   

PE(18:1(11Z)/P-18:1(11Z))

PE(18:1(11Z)/P-18:1(11Z))

C41H78NO7P (727.5516)


   

PE(18:1(11Z)/P-18:1(9Z))

PE(18:1(11Z)/P-18:1(9Z))

C41H78NO7P (727.5516)


   

1-(10Z-heptadecenoyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

1-(10Z-heptadecenoyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-10-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-10-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

C41H78NO7P (727.5516)


   

[3-hexadecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   
   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (22Z,25Z,28Z)-hexatriaconta-22,25,28-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (22Z,25Z,28Z)-hexatriaconta-22,25,28-trienoate

C41H78NO7P (727.5516)


   

Lnape 26:3/N-9:0

Lnape 26:3/N-9:0

C40H74NO8P (727.5152)


   

Lnape 9:0/N-26:3

Lnape 9:0/N-26:3

C40H74NO8P (727.5152)


   

HexCer 21:1;2O/14:1;O

HexCer 21:1;2O/14:1;O

C41H77NO9 (727.5598)


   

HexCer 20:2;2O/15:0;O

HexCer 20:2;2O/15:0;O

C41H77NO9 (727.5598)


   

HexCer 18:2;2O/17:0;O

HexCer 18:2;2O/17:0;O

C41H77NO9 (727.5598)


   

HexCer 16:2;2O/19:0;O

HexCer 16:2;2O/19:0;O

C41H77NO9 (727.5598)


   

HexCer 22:1;2O/13:1;O

HexCer 22:1;2O/13:1;O

C41H77NO9 (727.5598)


   

HexCer 19:0;2O/16:2;O

HexCer 19:0;2O/16:2;O

C41H77NO9 (727.5598)


   

HexCer 19:1;2O/16:1;O

HexCer 19:1;2O/16:1;O

C41H77NO9 (727.5598)


   

HexCer 17:2;2O/18:0;O

HexCer 17:2;2O/18:0;O

C41H77NO9 (727.5598)


   

HexCer 21:2;2O/14:0;O

HexCer 21:2;2O/14:0;O

C41H77NO9 (727.5598)


   

HexCer 19:2;2O/16:0;O

HexCer 19:2;2O/16:0;O

C41H77NO9 (727.5598)


   

HexCer 20:1;2O/15:1;O

HexCer 20:1;2O/15:1;O

C41H77NO9 (727.5598)


   

HexCer 22:2;2O/13:0;O

HexCer 22:2;2O/13:0;O

C41H77NO9 (727.5598)


   

HexCer 17:1;2O/18:1;O

HexCer 17:1;2O/18:1;O

C41H77NO9 (727.5598)


   

HexCer 17:0;2O/18:2;O

HexCer 17:0;2O/18:2;O

C41H77NO9 (727.5598)


   

HexCer 18:1;2O/17:1;O

HexCer 18:1;2O/17:1;O

C41H77NO9 (727.5598)


   

HexCer 16:1;2O/19:1;O

HexCer 16:1;2O/19:1;O

C41H77NO9 (727.5598)


   

[3-nonoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-nonoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

Lnape 18:1/N-17:2

Lnape 18:1/N-17:2

C40H74NO8P (727.5152)


   

Lnape 17:1/N-18:2

Lnape 17:1/N-18:2

C40H74NO8P (727.5152)


   

Lnape 22:2/N-13:1

Lnape 22:2/N-13:1

C40H74NO8P (727.5152)


   

Lnape 13:1/N-22:2

Lnape 13:1/N-22:2

C40H74NO8P (727.5152)


   

Lnape 15:0/N-20:3

Lnape 15:0/N-20:3

C40H74NO8P (727.5152)


   

Lnape 19:2/N-16:1

Lnape 19:2/N-16:1

C40H74NO8P (727.5152)


   

Lnape 20:2/N-15:1

Lnape 20:2/N-15:1

C40H74NO8P (727.5152)


   

Lnape 11:0/N-24:3

Lnape 11:0/N-24:3

C40H74NO8P (727.5152)


   

Lnape 21:2/N-14:1

Lnape 21:2/N-14:1

C40H74NO8P (727.5152)


   

Lnape 19:0/N-16:3

Lnape 19:0/N-16:3

C40H74NO8P (727.5152)


   

Lnape 20:3/N-15:0

Lnape 20:3/N-15:0

C40H74NO8P (727.5152)


   

Lnape 16:3/N-19:0

Lnape 16:3/N-19:0

C40H74NO8P (727.5152)


   

Lnape 13:0/N-22:3

Lnape 13:0/N-22:3

C40H74NO8P (727.5152)


   

Lnape 18:3/N-17:0

Lnape 18:3/N-17:0

C40H74NO8P (727.5152)


   

Lnape 19:1/N-16:2

Lnape 19:1/N-16:2

C40H74NO8P (727.5152)


   

Lnape 17:0/N-18:3

Lnape 17:0/N-18:3

C40H74NO8P (727.5152)


   

Lnape 18:2/N-17:1

Lnape 18:2/N-17:1

C40H74NO8P (727.5152)


   

Lnape 15:1/N-20:2

Lnape 15:1/N-20:2

C40H74NO8P (727.5152)


   

Lnape 17:2/N-18:1

Lnape 17:2/N-18:1

C40H74NO8P (727.5152)


   

Lnape 16:2/N-19:1

Lnape 16:2/N-19:1

C40H74NO8P (727.5152)


   

Lnape 24:3/N-11:0

Lnape 24:3/N-11:0

C40H74NO8P (727.5152)


   

Lnape 14:1/N-21:2

Lnape 14:1/N-21:2

C40H74NO8P (727.5152)


   

Lnape 16:1/N-19:2

Lnape 16:1/N-19:2

C40H74NO8P (727.5152)


   

Lnape 22:3/N-13:0

Lnape 22:3/N-13:0

C40H74NO8P (727.5152)


   

HexCer 20:3;3O/14:0;(2OH)

HexCer 20:3;3O/14:0;(2OH)

C40H73NO10 (727.5234)


   

HexCer 19:3;3O/15:0;(2OH)

HexCer 19:3;3O/15:0;(2OH)

C40H73NO10 (727.5234)


   

HexCer 12:1;3O/22:2;(2OH)

HexCer 12:1;3O/22:2;(2OH)

C40H73NO10 (727.5234)


   

HexCer 18:3;3O/16:0;(2OH)

HexCer 18:3;3O/16:0;(2OH)

C40H73NO10 (727.5234)


   

HexCer 22:3;3O/12:0;(2OH)

HexCer 22:3;3O/12:0;(2OH)

C40H73NO10 (727.5234)


   

HexCer 21:3;3O/13:0;(2OH)

HexCer 21:3;3O/13:0;(2OH)

C40H73NO10 (727.5234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] octanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] octanoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C41H78NO7P (727.5516)


   

[3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]-2-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-heptanoyloxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptanoyloxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-nonanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-nonanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] dodecanoate

C41H78NO7P (727.5516)


   

(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctadec-4-ene-1-sulfonic acid

(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctadec-4-ene-1-sulfonic acid

C44H73NO5S (727.5209)


   

(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctadeca-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctadeca-4,8-diene-1-sulfonic acid

C44H73NO5S (727.5209)


   

(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyoctadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyoctadeca-4,8,12-triene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C41H78NO7P (727.5516)


   

(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydocosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydocosa-4,8-diene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] icosanoate

C41H78NO7P (727.5516)


   

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]icosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]icosa-4,8-diene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-nonadec-9-enoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C41H78NO7P (727.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

C44H73NO5S (727.5209)


   

(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydocosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydocosa-4,8,12-triene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] decanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] decanoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C41H78NO7P (727.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetracosa-4,8,12-triene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C41H78NO7P (727.5516)


   

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]icosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]icosa-4,8,12-triene-1-sulfonic acid

C44H73NO5S (727.5209)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-heptadecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-heptadecoxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C40H74NO8P (727.5152)


   

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

HexCer 18:2;3O/16:1;(2OH)

HexCer 18:2;3O/16:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 15:2;3O/19:1;(2OH)

HexCer 15:2;3O/19:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 20:2;3O/14:1;(2OH)

HexCer 20:2;3O/14:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 19:2;3O/15:1;(2OH)

HexCer 19:2;3O/15:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 14:1;3O/20:2;(2OH)

HexCer 14:1;3O/20:2;(2OH)

C40H73NO10 (727.5234)


   

HexCer 14:2;3O/20:1;(2OH)

HexCer 14:2;3O/20:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 22:2;3O/12:1;(2OH)

HexCer 22:2;3O/12:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 21:2;3O/13:1;(2OH)

HexCer 21:2;3O/13:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 18:1;3O/16:2;(2OH)

HexCer 18:1;3O/16:2;(2OH)

C40H73NO10 (727.5234)


   

HexCer 16:2;3O/18:1;(2OH)

HexCer 16:2;3O/18:1;(2OH)

C40H73NO10 (727.5234)


   

HexCer 16:1;3O/18:2;(2OH)

HexCer 16:1;3O/18:2;(2OH)

C40H73NO10 (727.5234)


   

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C41H78NO7P (727.5516)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] tetradecanoate

C41H78NO7P (727.5516)


   

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-icos-11-enoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] hexadecanoate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] octadecanoate

C41H78NO7P (727.5516)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C41H78NO7P (727.5516)


   

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H78NO7P (727.5516)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C40H74NO8P (727.5152)


   

[3-octanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-octanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C40H74NO8P (727.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-nonadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-nonadec-9-enoate

C40H74NO8P (727.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-octadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-octadec-9-enoate

C40H74NO8P (727.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] nonadecanoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C40H74NO8P (727.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C40H74NO8P (727.5152)


   

[3-dodecanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[3-decanoyloxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

plasmenyl-PC 33:2

plasmenyl-PC 33:2

C41H78NO7P (727.5516)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-13-enoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-7-enoate

C40H74NO8P (727.5152)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C41H78NO7P (727.5516)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-6-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-6-enoate

C40H74NO8P (727.5152)


   

4-[2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C40H74NO8P (727.5152)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(E)-dec-4-enoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dec-4-enoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-9-enoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C40H74NO8P (727.5152)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[3-decanoyloxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-decanoyloxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C40H74NO8P (727.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] nonadecanoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-11-enoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-11-enoate

C40H74NO8P (727.5152)


   

[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2S)-2-dodecanoyloxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[2,3-bis[[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C40H74NO8P (727.5152)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (5E,8E)-icosa-5,8-dienoate

C41H78NO7P (727.5516)


   

4-[3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] octadec-17-enoate

C40H74NO8P (727.5152)


   

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-7-enoate

C40H74NO8P (727.5152)


   

[(2R)-3-dodecanoyloxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C40H74NO8P (727.5152)


   

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-6-enoate

C40H74NO8P (727.5152)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-dodec-5-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-dodec-5-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-nonadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-nonadec-9-enoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C41H78NO7P (727.5516)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (11E,14E)-icosa-11,14-dienoate

C41H78NO7P (727.5516)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-decanoyloxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-decanoyloxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-dodec-5-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-dodec-5-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C40H74NO8P (727.5152)


   

[3-hexadecanoyloxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C40H74NO8P (727.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C40H74NO8P (727.5152)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C40H74NO8P (727.5152)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-hexadec-7-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C40H74NO8P (727.5152)


   

4-[2-[(E)-dec-4-enoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dec-4-enoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C40H74NO8P (727.5152)


   

[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C40H74NO8P (727.5152)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-13-enoate

C40H74NO8P (727.5152)


   

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-dodecanoyloxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-dodecanoyloxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C40H74NO8P (727.5152)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(6E,9E)-dodeca-6,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C41H78NO7P (727.5516)


   

[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C40H74NO8P (727.5152)


   

4-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-9-enoate

C40H74NO8P (727.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] octadec-17-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] octadec-17-enoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C41H78NO7P (727.5516)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-4-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-octadec-4-enoate

C40H74NO8P (727.5152)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H74NO8P (727.5152)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C40H74NO8P (727.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-octadec-4-enoate

C40H74NO8P (727.5152)


   

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C44H73NO7 (727.5387)


   

2-[[(8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

2-[[(8E,12E,16E)-2-[[(Z)-heptadec-9-enoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-2-[[(Z)-heptadec-9-enoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H76N2O7P+ (727.539)


   

PC(18:3(6Z,9Z,12Z)/14:0)

PC(18:3(6Z,9Z,12Z)/14:0)

C40H74NO8P (727.5152)


   

PC(14:0/18:3(9Z,12Z,15Z))

PC(14:0/18:3(9Z,12Z,15Z))

C40H74NO8P (727.5152)


   

PC(14:1(9Z)/18:2(9Z,12Z))

PC(14:1(9Z)/18:2(9Z,12Z))

C40H74NO8P (727.5152)


   

PC(18:2(9Z,12Z)/14:1(9Z))

PC(18:2(9Z,12Z)/14:1(9Z))

C40H74NO8P (727.5152)


   

PC(18:3(9Z,12Z,15Z)/14:0)

PC(18:3(9Z,12Z,15Z)/14:0)

C40H74NO8P (727.5152)


   

PC(14:0/18:3(6Z,9Z,12Z))

PC(14:0/18:3(6Z,9Z,12Z))

C40H74NO8P (727.5152)


   

1-(1Z-Octadecenyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine

1-(1Z-Octadecenyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alkenyl and acyl groups are specified asas (1Z)-octadecenyl and linoleoyl respectively.

   

PE(P-18:1(9Z)/18:1(9Z))

PE(P-18:1(9Z)/18:1(9Z))

C41H78NO7P (727.5516)


   

PE(P-18:1(11Z)/18:1(9Z))

PE(P-18:1(11Z)/18:1(9Z))

C41H78NO7P (727.5516)


   

PE(P-16:0/20:2(11Z,14Z))

PE(P-16:0/20:2(11Z,14Z))

C41H78NO7P (727.5516)


   

PE(15:0/20:3(8Z,11Z,14Z))

PE(15:0/20:3(8Z,11Z,14Z))

C40H74NO8P (727.5152)


   

PE(20:3(8Z,11Z,14Z)/15:0)

PE(20:3(8Z,11Z,14Z)/15:0)

C40H74NO8P (727.5152)


   

PE-NMe(14:0/20:3(5Z,8Z,11Z))

PE-NMe(14:0/20:3(5Z,8Z,11Z))

C40H74NO8P (727.5152)


   

PE-NMe(16:0/18:3(6Z,9Z,12Z))

PE-NMe(16:0/18:3(6Z,9Z,12Z))

C40H74NO8P (727.5152)


   

PE-NMe(18:3(6Z,9Z,12Z)/16:0)

PE-NMe(18:3(6Z,9Z,12Z)/16:0)

C40H74NO8P (727.5152)


   

PE-NMe(20:3(5Z,8Z,11Z)/14:0)

PE-NMe(20:3(5Z,8Z,11Z)/14:0)

C40H74NO8P (727.5152)


   

PE(20:2(11Z,14Z)/P-16:0)

PE(20:2(11Z,14Z)/P-16:0)

C41H78NO7P (727.5516)


   

GlcCer(d18:2(4E,8Z)/17:0(2OH[R]))

GlcCer(d18:2(4E,8Z)/17:0(2OH[R]))

C41H77NO9 (727.5598)


   

1-[(1Z,11Z)-octadecadienyl]-2-oleoyl-sn-glycero-3-phosphoethanolamine

1-[(1Z,11Z)-octadecadienyl]-2-oleoyl-sn-glycero-3-phosphoethanolamine

C41H78NO7P (727.5516)


A 1-(alk-1-enyl)-2-acyl-sn-glycero-3-phosphoethanolamine in which the alk-1-enyl and acyl groups are specified as (1Z,11Z)-octadecadienyl and oleoyl respectively.

   

1-(1Z-octadecenyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

1-(1Z-octadecenyl)-2-linoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

C41H78NO7P (727.5516)


A 1-(Z)-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine zwitterion in which the alkenyl and acyl groups are specified as (1Z)-octadecenyl and linoleoyl respectively.

   

MePC(32:3)

MePC(14:1(1)_18:2)

C41H78NO7P (727.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(34:3)

dMePE(16:1(1)_18:2)

C41H78NO7P (727.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

CerP(41:3)

CerP(t16:0_25:3)

C41H78NO7P (727.5516)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(35:2)

Hex1Cer(t17:0_18:2)

C41H77NO9 (727.5598)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   

PC P-15:0/18:2 or PC O-15:1/18:2

PC P-15:0/18:2 or PC O-15:1/18:2

C41H78NO7P (727.5516)


   
   

PC P-16:0/17:2 or PC O-16:1/17:2

PC P-16:0/17:2 or PC O-16:1/17:2

C41H78NO7P (727.5516)


   
   

PC P-16:1/17:1 or PC O-16:2/17:1

PC P-16:1/17:1 or PC O-16:2/17:1

C41H78NO7P (727.5516)


   
   

PC P-18:1/15:1 or PC O-18:2/15:1

PC P-18:1/15:1 or PC O-18:2/15:1

C41H78NO7P (727.5516)


   
   

PC P-33:2 or PC O-33:3

PC P-33:2 or PC O-33:3

C41H78NO7P (727.5516)


   
   
   
   
   
   
   
   
   
   
   
   

PE P-14:0/22:2 or PE O-14:1/22:2

PE P-14:0/22:2 or PE O-14:1/22:2

C41H78NO7P (727.5516)


   
   

PE P-16:0/20:2 or PE O-16:1/20:2

PE P-16:0/20:2 or PE O-16:1/20:2

C41H78NO7P (727.5516)


   
   

PE P-16:1/20:1 or PE O-16:2/20:1

PE P-16:1/20:1 or PE O-16:2/20:1

C41H78NO7P (727.5516)


   

PE P-18:0/18:2 or PE O-18:1/18:2

PE P-18:0/18:2 or PE O-18:1/18:2

C41H78NO7P (727.5516)


   
   

PE P-18:1/18:1 or PE O-18:2/18:1

PE P-18:1/18:1 or PE O-18:2/18:1

C41H78NO7P (727.5516)


   
   

PE P-20:1/16:1 or PE O-20:2/16:1

PE P-20:1/16:1 or PE O-20:2/16:1

C41H78NO7P (727.5516)


   
   

PE P-22:1/14:1 or PE O-22:2/14:1

PE P-22:1/14:1 or PE O-22:2/14:1

C41H78NO7P (727.5516)


   
   

PE P-36:2 or PE O-36:3

PE P-36:2 or PE O-36:3

C41H78NO7P (727.5516)


   

CerP 17:2;O2/24:1;O

CerP 17:2;O2/24:1;O

C41H78NO7P (727.5516)


   

CerP 19:2;O2/22:1;O

CerP 19:2;O2/22:1;O

C41H78NO7P (727.5516)


   

CerP 21:2;O2/20:1;O

CerP 21:2;O2/20:1;O

C41H78NO7P (727.5516)


   
   

GalCer 14:2;O2/21:0;O

GalCer 14:2;O2/21:0;O

C41H77NO9 (727.5598)


   

GalCer 15:0;O3/20:2

GalCer 15:0;O3/20:2

C41H77NO9 (727.5598)


   

GalCer 15:1;O2/20:1;O

GalCer 15:1;O2/20:1;O

C41H77NO9 (727.5598)


   

GalCer 15:2;O2/20:0;O

GalCer 15:2;O2/20:0;O

C41H77NO9 (727.5598)


   

GalCer 16:2;O2/19:0;O

GalCer 16:2;O2/19:0;O

C41H77NO9 (727.5598)


   

GalCer 17:0;O3/18:2

GalCer 17:0;O3/18:2

C41H77NO9 (727.5598)


   

GalCer 17:1;O2/18:1;O

GalCer 17:1;O2/18:1;O

C41H77NO9 (727.5598)


   

GalCer 17:2;O2/18:0;O

GalCer 17:2;O2/18:0;O

C41H77NO9 (727.5598)


   

GalCer 18:0;O3/17:2

GalCer 18:0;O3/17:2

C41H77NO9 (727.5598)


   

GalCer 18:2;O2/17:0;O

GalCer 18:2;O2/17:0;O

C41H77NO9 (727.5598)


   

GalCer 19:2;O2/16:0;O

GalCer 19:2;O2/16:0;O

C41H77NO9 (727.5598)


   

GalCer 20:2;O2/15:0;O

GalCer 20:2;O2/15:0;O

C41H77NO9 (727.5598)


   

GalCer 21:2;O2/14:0;O

GalCer 21:2;O2/14:0;O

C41H77NO9 (727.5598)


   

GalCer 22:2;O2/13:0;O

GalCer 22:2;O2/13:0;O

C41H77NO9 (727.5598)


   

GalCer 35:2;O2;O

GalCer 35:2;O2;O

C41H77NO9 (727.5598)


   

GalCer 35:2;O3

GalCer 35:2;O3

C41H77NO9 (727.5598)


   

GlcCer 14:2;O2/21:0;O

GlcCer 14:2;O2/21:0;O

C41H77NO9 (727.5598)


   

GlcCer 15:0;O3/20:2

GlcCer 15:0;O3/20:2

C41H77NO9 (727.5598)


   

GlcCer 15:1;O2/20:1;O

GlcCer 15:1;O2/20:1;O

C41H77NO9 (727.5598)


   

GlcCer 15:2;O2/20:0;O

GlcCer 15:2;O2/20:0;O

C41H77NO9 (727.5598)


   

GlcCer 15:2;O2(4E,6E)/20:0;O

GlcCer 15:2;O2(4E,6E)/20:0;O

C41H77NO9 (727.5598)


   

GlcCer 16:2;O2/19:0;O

GlcCer 16:2;O2/19:0;O

C41H77NO9 (727.5598)


   

GlcCer 17:0;O3/18:2

GlcCer 17:0;O3/18:2

C41H77NO9 (727.5598)


   

GlcCer 17:1;O2/18:1;O

GlcCer 17:1;O2/18:1;O

C41H77NO9 (727.5598)


   

GlcCer 17:2;O2/18:0;O

GlcCer 17:2;O2/18:0;O

C41H77NO9 (727.5598)


   

GlcCer 18:0;O3/17:2

GlcCer 18:0;O3/17:2

C41H77NO9 (727.5598)


   

GlcCer 18:2;O2/17:0;O

GlcCer 18:2;O2/17:0;O

C41H77NO9 (727.5598)


   

GlcCer 19:2;O2/16:0;O

GlcCer 19:2;O2/16:0;O

C41H77NO9 (727.5598)


   

GlcCer 20:2;O2/15:0;O

GlcCer 20:2;O2/15:0;O

C41H77NO9 (727.5598)


   

GlcCer 21:2;O2/14:0;O

GlcCer 21:2;O2/14:0;O

C41H77NO9 (727.5598)


   

GlcCer 22:2;O2/13:0;O

GlcCer 22:2;O2/13:0;O

C41H77NO9 (727.5598)


   

GlcCer 35:2;O2;O

GlcCer 35:2;O2;O

C41H77NO9 (727.5598)


   

GlcCer 35:2;O3

GlcCer 35:2;O3

C41H77NO9 (727.5598)


   

HexCer 12:1;O3/22:2;O

HexCer 12:1;O3/22:2;O

C40H73NO10 (727.5234)


   

HexCer 14:2;O2/21:0;2OH

HexCer 14:2;O2/21:0;2OH

C41H77NO9 (727.5598)


   

HexCer 14:2;O2/21:0;3OH

HexCer 14:2;O2/21:0;3OH

C41H77NO9 (727.5598)


   

HexCer 14:2;O2/21:0;O

HexCer 14:2;O2/21:0;O

C41H77NO9 (727.5598)


   

HexCer 15:0;O3/20:2

HexCer 15:0;O3/20:2

C41H77NO9 (727.5598)


   

HexCer 15:1;O2/20:1;2OH

HexCer 15:1;O2/20:1;2OH

C41H77NO9 (727.5598)


   

HexCer 15:1;O2/20:1;3OH

HexCer 15:1;O2/20:1;3OH

C41H77NO9 (727.5598)


   

HexCer 15:1;O2/20:1;O

HexCer 15:1;O2/20:1;O

C41H77NO9 (727.5598)


   

HexCer 15:2;O2/20:0;2OH

HexCer 15:2;O2/20:0;2OH

C41H77NO9 (727.5598)


   

HexCer 15:2;O2/20:0;3OH

HexCer 15:2;O2/20:0;3OH

C41H77NO9 (727.5598)


   

HexCer 15:2;O2/20:0;O

HexCer 15:2;O2/20:0;O

C41H77NO9 (727.5598)


   

HexCer 16:2;O2/19:0;2OH

HexCer 16:2;O2/19:0;2OH

C41H77NO9 (727.5598)


   

HexCer 16:2;O2/19:0;3OH

HexCer 16:2;O2/19:0;3OH

C41H77NO9 (727.5598)


   

HexCer 16:2;O2/19:0;O

HexCer 16:2;O2/19:0;O

C41H77NO9 (727.5598)


   

HexCer 17:0;O3/18:2

HexCer 17:0;O3/18:2

C41H77NO9 (727.5598)


   

HexCer 17:1;O2/18:1;2OH

HexCer 17:1;O2/18:1;2OH

C41H77NO9 (727.5598)


   

HexCer 17:1;O2/18:1;3OH

HexCer 17:1;O2/18:1;3OH

C41H77NO9 (727.5598)


   

HexCer 17:1;O2/18:1;O

HexCer 17:1;O2/18:1;O

C41H77NO9 (727.5598)


   

HexCer 17:2;O2/18:0;2OH

HexCer 17:2;O2/18:0;2OH

C41H77NO9 (727.5598)


   

HexCer 17:2;O2/18:0;3OH

HexCer 17:2;O2/18:0;3OH

C41H77NO9 (727.5598)


   

HexCer 17:2;O2/18:0;O

HexCer 17:2;O2/18:0;O

C41H77NO9 (727.5598)


   

HexCer 18:0;O3/17:2

HexCer 18:0;O3/17:2

C41H77NO9 (727.5598)


   

HexCer 18:2;O2/17:0;2OH

HexCer 18:2;O2/17:0;2OH

C41H77NO9 (727.5598)


   

HexCer 18:2;O2/17:0;3OH

HexCer 18:2;O2/17:0;3OH

C41H77NO9 (727.5598)


   

HexCer 18:2;O2/17:0;O

HexCer 18:2;O2/17:0;O

C41H77NO9 (727.5598)


   

HexCer 19:2;O2/16:0;2OH

HexCer 19:2;O2/16:0;2OH

C41H77NO9 (727.5598)


   

HexCer 19:2;O2/16:0;3OH

HexCer 19:2;O2/16:0;3OH

C41H77NO9 (727.5598)


   

HexCer 19:2;O2/16:0;O

HexCer 19:2;O2/16:0;O

C41H77NO9 (727.5598)


   

HexCer 20:2;O2/15:0;2OH

HexCer 20:2;O2/15:0;2OH

C41H77NO9 (727.5598)


   

HexCer 20:2;O2/15:0;3OH

HexCer 20:2;O2/15:0;3OH

C41H77NO9 (727.5598)


   

HexCer 20:2;O2/15:0;O

HexCer 20:2;O2/15:0;O

C41H77NO9 (727.5598)


   

HexCer 21:2;O2/14:0;2OH

HexCer 21:2;O2/14:0;2OH

C41H77NO9 (727.5598)


   

HexCer 21:2;O2/14:0;3OH

HexCer 21:2;O2/14:0;3OH

C41H77NO9 (727.5598)


   

HexCer 21:2;O2/14:0;O

HexCer 21:2;O2/14:0;O

C41H77NO9 (727.5598)


   

HexCer 22:2;O2/13:0;2OH

HexCer 22:2;O2/13:0;2OH

C41H77NO9 (727.5598)


   

HexCer 22:2;O2/13:0;3OH

HexCer 22:2;O2/13:0;3OH

C41H77NO9 (727.5598)


   

HexCer 22:2;O2/13:0;O

HexCer 22:2;O2/13:0;O

C41H77NO9 (727.5598)


   
   

HexCer 35:2;O2;O

HexCer 35:2;O2;O

C41H77NO9 (727.5598)


   

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentadeca-4,8-dien-2-yl]nonadecanimidic acid

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentadeca-4,8-dien-2-yl]nonadecanimidic acid

C41H77NO9 (727.5598)


   

(4E,8E)-N-D-2'-hydroxypalmitoyl-1-O-β-D-glucopyranosyl-9-methyl-4,8-spingodienine

NA

C41H77NO9 (727.5598)


{"Ingredient_id": "HBIN010345","Ingredient_name": "(4E,8E)-N-D-2'-hydroxypalmitoyl-1-O-\u03b2-D-glucopyranosyl-9-methyl-4,8-spingodienine","Alias": "NA","Ingredient_formula": "C41H77NO9","Ingredient_Smile": "CCCCCCCCCCCCCCC(C(=O)NC(COC1C(C(C(C(O1)CO)O)O)O)C(C=CCCC=C(C)CCCCCCCCC)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "37169","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

2-hydroxy-n-[(5e,9z)-3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}nonadeca-5,9-dien-2-yl]hexadecanimidic acid

2-hydroxy-n-[(5e,9z)-3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}nonadeca-5,9-dien-2-yl]hexadecanimidic acid

C41H77NO9 (727.5598)


   

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}nonadeca-5,9-dien-2-yl)hexadecanimidic acid

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}nonadeca-5,9-dien-2-yl)hexadecanimidic acid

C41H77NO9 (727.5598)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)hexadecanimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)hexadecanimidic acid

C41H77NO9 (727.5598)


   

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentadeca-4,8-dien-2-yl)nonadecanimidic acid

2-hydroxy-n-(3-hydroxy-9-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentadeca-4,8-dien-2-yl)nonadecanimidic acid

C41H77NO9 (727.5598)


   

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-1-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]-15-methylhexadecanimidic acid

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-1-{[(2s,3s,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]-15-methylhexadecanimidic acid

C41H77NO9 (727.5598)


   

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)-15-methylhexadecanimidic acid

2-hydroxy-n-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl)-15-methylhexadecanimidic acid

C41H77NO9 (727.5598)


   

(2r)-2-hydroxy-n-[(2r,3s,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanimidic acid

(2r)-2-hydroxy-n-[(2r,3s,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanimidic acid

C41H77NO9 (727.5598)


   

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanimidic acid

(2r)-2-hydroxy-n-[(2s,3r,4e,8e)-3-hydroxy-9-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octadeca-4,8-dien-2-yl]hexadecanimidic acid

C41H77NO9 (727.5598)