Exact Mass: 722.3724668

Exact Mass Matches: 722.3724668

Found 100 metabolites which its exact mass value is equals to given mass value 722.3724668, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

PA(14:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O10P (722.4158628)


PA(14:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:1(9Z))

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O10P (722.4158628)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:1(9Z)), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O10P (722.4158628)


PA(14:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:1(9Z))

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O10P (722.4158628)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:1(9Z)), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

Cheiranthoside IV

(+)-Cheiranthoside IV

C37H54O14 (722.3513384)


   
   

12-O-Acetylfusicoccin

12-O-Acetylfusicoccin

C38H58O13 (722.3877218)


   

12-O-Acetylisofusicoccin

12-O-Acetylisofusicoccin

C38H58O13 (722.3877218)


   

(19R)-19-Hydroxytabernaelegantine A

(19R)-19-Hydroxytabernaelegantine A

C43H54N4O6 (722.4043144)


   
   

beta-D-oleandropyranosyl-(1->4)-O-beta-D-cymaropyranosyl-(1->4)-O-beta-D-canaropyranosyl-(1->4)-O-beta-D-cymaropyranosyl-(1->4)-O-oleandro-1,5-lactone|perifosaccharide C

beta-D-oleandropyranosyl-(1->4)-O-beta-D-cymaropyranosyl-(1->4)-O-beta-D-canaropyranosyl-(1->4)-O-beta-D-cymaropyranosyl-(1->4)-O-oleandro-1,5-lactone|perifosaccharide C

C34H58O16 (722.3724668)


   

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-8,9-diacetate-7-isobutyrate-2,5-bis(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 8,9-diacetate 7-isobutyrate 2,5-bis(2-methylbutyrate)

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-8,9-diacetate-7-isobutyrate-2,5-bis(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 8,9-diacetate 7-isobutyrate 2,5-bis(2-methylbutyrate)

C38H58O13 (722.3877218)


   
   
   

Arvenin II

23,24-dihydrocucurbitacin B 2-O-beta-D-glucoside

C38H58O13 (722.3877218)


Arvenin II is a natural product found in Picrorhiza kurrooa, Citrullus colocynthis, and Cucumis melo with data available.

   

(3R)-hydroxytabernaelegantine B

(3R)-hydroxytabernaelegantine B

C43H54N4O6 (722.4043144)


   

(3R)-hydroxytabernaelegantine A

(3R)-hydroxytabernaelegantine A

C43H54N4O6 (722.4043144)


   
   

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-8,9-diacetate-7-isobutyrate-2,3-bis(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 8,9-diacetate 7-isobutyrate 2,3-bis(2-methylbutyrate)

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-8,9-diacetate-7-isobutyrate-2,3-bis(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 8,9-diacetate 7-isobutyrate 2,3-bis(2-methylbutyrate)

C38H58O13 (722.3877218)


   

(23S)-spirosta-5,25(27)-diene-1beta,3beta,23-triol 1-O-2)-alpha-L-arabinopyranoside>

(23S)-spirosta-5,25(27)-diene-1beta,3beta,23-triol 1-O-2)-alpha-L-arabinopyranoside>

C38H58O13 (722.3877218)


   

[(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate

NCGC00384698-01![(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate

C38H58O13 (722.3877218)


   

C38H58O13

NCGC00380920-01_C38H58O13_

C38H58O13 (722.3877218)


   

3-R,S-hydroxytabernaelegantine A

3-R,S-hydroxytabernaelegantine A

C43H54N4O6 (722.4043144)


   

[(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate [IIN-based: Match]

NCGC00384698-01![(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate [IIN-based: Match]

C38H58O13 (722.3877218)


   
   

2-O-Glucopyranosylcucurbitacin F-25-Acetate

2-O-Glucopyranosylcucurbitacin F-25-Acetate

C38H58O13 (722.3877218)


   
   

2-[2,4-bis(2-methylbutan-2-yl)phenoxy]-N-[4-[5-oxo-4-(1-phenyltetrazol-5-yl)sulfanyl-3-pyrrolidin-1-yl-4H-pyrazol-1-yl]phenyl]butanamide

2-[2,4-bis(2-methylbutan-2-yl)phenoxy]-N-[4-[5-oxo-4-(1-phenyltetrazol-5-yl)sulfanyl-3-pyrrolidin-1-yl-4H-pyrazol-1-yl]phenyl]butanamide

C40H50N8O3S (722.3726389999999)


   

PA(14:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(14:1(9Z)/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C39H63O10P (722.4158628)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:1(9Z))

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/14:1(9Z))

C39H63O10P (722.4158628)


   

PA(14:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(14:1(9Z)/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C39H63O10P (722.4158628)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:1(9Z))

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/14:1(9Z))

C39H63O10P (722.4158628)


   

methyl (1R,15R,17R,18R)-17-ethyl-7-[(1S,12S,14S,15S)-15-ethyl-12-hydroxy-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

methyl (1R,15R,17R,18R)-17-ethyl-7-[(1S,12S,14S,15S)-15-ethyl-12-hydroxy-18-methoxycarbonyl-17-methyl-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraen-12-yl]-6-methoxy-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8-tetraene-1-carboxylate

C43H54N4O6 (722.4043144)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tridec-9-enoate

C35H62O15 (722.4088502)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C35H62O15 (722.4088502)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C35H62O15 (722.4088502)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate

C35H62O15 (722.4088502)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C35H62O15 (722.4088502)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C35H62O15 (722.4088502)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C35H63O13P (722.4006078)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C35H63O13P (722.4006078)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C35H63O13P (722.4006078)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C35H63O13P (722.4006078)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C35H63O13P (722.4006078)


   

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C35H63O13P (722.4006078)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H63O13P (722.4006078)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-tridec-9-enoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-tridec-9-enoate

C35H63O13P (722.4006078)


   

[(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate

[(6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxoheptan-2-yl] acetate

C38H58O13 (722.3877218)


   

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C35H63O13P (722.4006078)


   

[(2S,3S,6S)-6-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C37H54O12S (722.3335804000001)


   

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C35H63O13P (722.4006078)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C39H63O10P (722.4158628)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C39H63O10P (722.4158628)


   

phosphatidylserine 32:6(1-)

phosphatidylserine 32:6(1-)

C38H61NO10P (722.4032876)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 32 carbons in total and 6 double bonds.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

ACTH (34-39)

ACTH (34-39)

C37H50N6O9 (722.363909)


ACTH (34-39) is an adrenocorticotropic hormone fragment[1].