Exact Mass: 720.4032686

Exact Mass Matches: 720.4032686

Found 164 metabolites which its exact mass value is equals to given mass value 720.4032686, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

PA(13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/6 keto-PGF1alpha), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(6 keto-PGF1alpha/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/TXB2), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(TXB2/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(a-13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/a-13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(6 keto-PGF1alpha/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/a-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(a-13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/TXB2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/a-13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(TXB2/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/a-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(i-13:0/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/i-13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(6 keto-PGF1alpha/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/i-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(i-13:0/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/TXB2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/i-13:0)

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H65O12P (720.421342)


PA(TXB2/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/i-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Cucurbitacin B 2-O-beta-D-glucoside

Cucurbitacin B 2-O-beta-D-glucoside

C38H56O13 (720.3720726)


   

25-O-Acetylbryoamaride

25-O-Acetylbryoamaride

C38H56O13 (720.3720726)


   
   
   
   
   
   
   
   
   
   
   
   
   

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranoside

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranoside

C40H64O11 (720.4448394)


   

cumingianoside E

cumingianoside E

C40H64O11 (720.4448394)


A triterpenoid saponin that is 24,25-epoxy-13,30-cyclodammarane-3,7,23-triol esterified to the corresponding acetate at position 3 and attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum it exhibits antileukemic activity.

   

3,23-O-butylidene-2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid beta-D-glucopyranosyl ester|rubusside A

3,23-O-butylidene-2alpha,3beta,19alpha,23-tetrahydroxy-urs-12-en-28-oic acid beta-D-glucopyranosyl ester|rubusside A

C40H64O11 (720.4448394)


   
   

2,3,4-tri(6-methylheptanoyl)-alpha-D-glucopyranosyl-beta-D-fructofuranoside|2,3,4-Tri(6-methylheptanoyl)-??-D-glucopyranosyl-??-D-fructofuranoside

2,3,4-tri(6-methylheptanoyl)-alpha-D-glucopyranosyl-beta-D-fructofuranoside|2,3,4-Tri(6-methylheptanoyl)-??-D-glucopyranosyl-??-D-fructofuranoside

C36H64O14 (720.4295844000001)


   

3-O-(2-O-Methyl-beta-D-xylopyranoside),15-sulfate-(3beta,6beta,8beta,15alpha,16beta,24R)-Stigmast-4-ene-3,6,8,15,16,29-hexol

3-O-(2-O-Methyl-beta-D-xylopyranoside),15-sulfate-(3beta,6beta,8beta,15alpha,16beta,24R)-Stigmast-4-ene-3,6,8,15,16,29-hexol

C35H60O13S (720.375443)


   

cumingianoside D

cumingianoside D

C40H64O11 (720.4448394)


A triterpenoid saponin that is 13,30-cyclodammar-25-ene-3,7,23,24-tetrol esterified to the corresponding acetate at position 3 and attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum, it exhibits antileukemic activity.

   
   
   

(2beta,3beta,4alpha,16beta)-3-[(4-O-acetyl-6-O-methyl-beta-D-glucopyranuronosyl)oxy]-2,16-dihydroxy-15-oxo-28-norolean-12-en-23-oic acid

(2beta,3beta,4alpha,16beta)-3-[(4-O-acetyl-6-O-methyl-beta-D-glucopyranuronosyl)oxy]-2,16-dihydroxy-15-oxo-28-norolean-12-en-23-oic acid

C38H56O13 (720.3720726)


   

12beta,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetyl-12beta-acetoxycimigenol-3-O-beta-D-xylopyranoside

12beta,25-O-diacetylcimigenol-3-O-beta-D-xylopyranoside|25-O-acetyl-12beta-acetoxycimigenol-3-O-beta-D-xylopyranoside

C39H60O12 (720.408456)


   
   
   

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labd-7-ene-2-O-alpha-rhamnopyranoside tetraacetate

3alpha-Angeloyloxy-2beta,15-dihydroxy-ent-labd-7-ene-2-O-alpha-rhamnopyranoside tetraacetate

C39H60O12 (720.408456)


   

sucrose ester MW 720

sucrose ester MW 720

C35H60O15 (720.393201)


   

O19-Methyl,O7,O21-di-Ac-Bafilomycin A1

O19-Methyl,O7,O21-di-Ac-Bafilomycin A1

C40H64O11 (720.4448394)


   
   
   
   
   
   

fruticoside H|spirosta-5,25(27)-diene-1beta,3beta-diol-1-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-fucopyranoside

fruticoside H|spirosta-5,25(27)-diene-1beta,3beta-diol-1-O-alpha-L-rhamnopyranosyl-(1?2)-beta-D-fucopyranoside

C39H60O12 (720.408456)


   
   
   
   

2,3,4-tri-O-(5-methylhexanoyl)-alpha-D-glucopyranosyl 6-O-acetyl-beta-D-fructofuranoside

2,3,4-tri-O-(5-methylhexanoyl)-alpha-D-glucopyranosyl 6-O-acetyl-beta-D-fructofuranoside

C35H60O15 (720.393201)


   

beta-D-glucopyranosyl (3beta)-29-acetoxy-3-hydroxy-23-methoxy-23-oxoolean-12-en-28-oate|kalidiumoside B

beta-D-glucopyranosyl (3beta)-29-acetoxy-3-hydroxy-23-methoxy-23-oxoolean-12-en-28-oate|kalidiumoside B

C39H60O12 (720.408456)


   
   

Me ester-Neosartortuic acid

Me ester-Neosartortuic acid

C43H60O9 (720.423711)


   
   

Arvenin I

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R,17R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

C38H56O13 (720.3720726)


Arvenin I is a natural product found in Streptomyces, Helicteres angustifolia, and other organisms with data available.

   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

NCGC00347539-02![2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

C35H60O15 (720.393201)


   

C38H56O13_(2S,4R,9beta,16alpha,17xi,23E)-2-(beta-D-Glucopyranosyloxy)-16,20-dihydroxy-9,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-5,23-dien-25-yl acetate

NCGC00385062-01_C38H56O13_(2S,4R,9beta,16alpha,17xi,23E)-2-(beta-D-Glucopyranosyloxy)-16,20-dihydroxy-9,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-5,23-dien-25-yl acetate

C38H56O13 (720.3720726)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate

C38H56O13 (720.3720726)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate

C35H60O15 (720.393201)


   
   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_major

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_major

C35H60O15 (720.393201)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_22.6\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_22.6\\%

C35H60O15 (720.393201)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_66.1\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_66.1\\%

C35H60O15 (720.393201)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_35.8\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_35.8\\%

C35H60O15 (720.393201)


   

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_65.2\\%

[2-[4-hydroxy-2,5-bis(hydroxymethyl)-3-(3-methylbutanoyloxy)oxolan-2-yl]oxy-6-(hydroxymethyl)-4,5-bis(2-methylpropanoyloxy)oxan-3-yl] decanoate_65.2\\%

C35H60O15 (720.393201)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_major

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_major

C38H56O13 (720.3720726)


   

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_minor

[(E,6R)-6-hydroxy-6-[(2S,8S,9R,10R,13R,14S,16R)-16-hydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-2-methyl-5-oxohept-3-en-2-yl] acetate_minor

C38H56O13 (720.3720726)


   

OHODA-PG

1-(9Z-octadecenoyl)-2-(9-hydroxy-12-oxo-10E-dodecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C36H65O12P (720.421342)


   

23R,24S-diacetoxy-3beta,15alpha,25-trihydroxy-cycloart-7-en-16-one-3-O-beta-D-xylopyranoside

23R,24S-diacetoxy-3beta,15alpha,25-trihydroxy-cyclo-lanost-7-en-16one-3- O-beta-D-xylopyranoside

C39H60O12 (720.408456)


   

Boc-Glu-Lys-Lys-AMC acetate salt

Boc-Glu-Lys-Lys-AMC acetate salt

C34H52N6O11 (720.3693882)


   

Tirilazad mesylate

Tirilazad mesylate

C39H56N6O5S (720.4032686)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants

   

Acylsucrose S4:23[1]*

Acylsucrose S4:23[1]*

C35H60O15 (720.393201)


   
   
   
   
   

PA(13:0/6 keto-PGF1alpha)

PA(13:0/6 keto-PGF1alpha)

C36H65O12P (720.421342)


   

PA(6 keto-PGF1alpha/13:0)

PA(6 keto-PGF1alpha/13:0)

C36H65O12P (720.421342)


   
   
   

PA(a-13:0/6 keto-PGF1alpha)

PA(a-13:0/6 keto-PGF1alpha)

C36H65O12P (720.421342)


   

PA(6 keto-PGF1alpha/a-13:0)

PA(6 keto-PGF1alpha/a-13:0)

C36H65O12P (720.421342)


   

PA(i-13:0/6 keto-PGF1alpha)

PA(i-13:0/6 keto-PGF1alpha)

C36H65O12P (720.421342)


   

PA(6 keto-PGF1alpha/i-13:0)

PA(6 keto-PGF1alpha/i-13:0)

C36H65O12P (720.421342)


   

O-[1-O-Palmitoyl-2-O-(11-carboxy-9-oxo-10-undecenoyl)-L-glycero-3-phospho]choline

O-[1-O-Palmitoyl-2-O-(11-carboxy-9-oxo-10-undecenoyl)-L-glycero-3-phospho]choline

C36H67NO11P+ (720.4451502)


   

2-[(2R,5R,8S,11R)-5,8-bis(2-amino-2-oxoethyl)-11-[(2R,4S,5E,7E,9E)-2,4-dihydroxypentadeca-5,7,9-trienyl]-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentazacycloheptadec-2-yl]acetamide

2-[(2R,5R,8S,11R)-5,8-bis(2-amino-2-oxoethyl)-11-[(2R,4S,5E,7E,9E)-2,4-dihydroxypentadeca-5,7,9-trienyl]-3,6,9,13,17-pentaoxo-1,4,7,10,14-pentazacycloheptadec-2-yl]acetamide

C33H52N8O10 (720.3806212000001)


   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C40H65O9P (720.436597)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate

C36H65O12P (720.421342)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C36H65O12P (720.421342)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C40H65O9P (720.436597)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H65O9P (720.436597)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H65O9P (720.436597)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H60O15 (720.393201)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C35H60O15 (720.393201)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C35H60O15 (720.393201)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C40H64O11 (720.4448394)


   

3,4,5-trihydroxy-6-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-2-tridecanoyloxypropoxy]oxane-2-carboxylic acid

C40H64O11 (720.4448394)


   

[3,4,5-trihydroxy-6-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118264000001)


   

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid

C40H64O11 (720.4448394)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C35H61O13P (720.3849585999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H61O13P (720.3849585999999)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C35H61O13P (720.3849585999999)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C35H61O13P (720.3849585999999)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C39H61O10P (720.4002136)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118264000001)


   

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C35H61O13P (720.3849585999999)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118264000001)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H64O12S (720.4118264000001)


   

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H61O13P (720.3849585999999)


   
   

SQDG(28:2)

SQDG(10:1(1)_18:1)

C37H68O11S (720.4482098000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

HSDVHK-NH2

HSDVHK-NH2

C30H48N12O9 (720.3667038)


HSDVHK-NH2 is an antagonist of the integrin αvβ3-vitronectin interaction, with an IC50 of 1.74 pg/mL (2.414 pM)[1][2].