Exact Mass: 716.4892984

Exact Mass Matches: 716.4892984

Found 471 metabolites which its exact mass value is equals to given mass value 716.4892984, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

2,3-Digeranylgeranyl sn-glycerol 1-phosphate

2,3-Bis-O-(geranylgeranyl)glycerol 1-phosphate; 2,3-Bis-O-(geranylgeranyl)-sn-glycerol-1-phosphate; 2,3-Digeranylgeranyl sn-glycerol 1-phosphate

C43H73O6P (716.5144487999999)


   

1-Hydroxy-gamma-carotene glucoside

1-beta-D-Glucopyranosyloxy-1,2-dihydro-beta,psi-carotene

C46H68O6 (716.5015628000001)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

DG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-hydroxypropan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H72O5 (716.5379462)


DG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-hydroxypropan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C47H72O5 (716.5379462)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-hydroxypropan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-hydroxypropan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-2 positions. The docosapentaenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0)

(2S)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-hydroxypropyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C47H72O5 (716.5379462)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:4n6/0:0/22:6n3)

(2R)-3-[(7Z,10Z,13Z,16Z)-Docosa-7,10,13,16-tetraenoyloxy]-2-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C47H72O5 (716.5379462)


DG(22:4n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:4n6/0:0/22:6n3), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The adrenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/22:5n6)

3-[(4Z,7Z,10Z,13Z,16Z)-Docosa-4,7,10,13,16-pentaenoyloxy]-2-hydroxypropyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C47H72O5 (716.5379462)


DG(22:5n6/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(22:5n6/0:0/22:5n6), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-3 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/22:5n3)

(2S)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


DG(22:5n6/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(22:5n6/0:0/22:5n3), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-3 positions. The docosapentaenoic acid moieties are derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n3/0:0/22:5n3)

3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-hydroxypropyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


DG(22:5n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1 C-2, or C-3 positions. DG(22:5n3/0:0/22:5n3), in particular, consists of two chains of docosapentaenoic acid at the C-1 and C-3 positions. The docosapentaenoic acid moieties are derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

PA(15:0/22:1(13Z))

[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H77O8P (716.5355772)


PA(15:0/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/22:1(13Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(18:3(6Z,9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z))

[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z))

[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(20:4(5Z,8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(20:4(8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C41H65O8P (716.441682)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:1(13Z)/15:0)

[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H77O8P (716.5355772)


PA(22:1(13Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/15:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(15:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/15:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/15:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/18:1(12Z)-O(9S,10R))

[(2R)-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/18:0)

[(2R)-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:1(12Z)-O(9S,10R)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/18:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:0/18:1(9Z)-O(12,13))

[(2R)-3-(octadecanoyloxy)-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/18:0)

[(2R)-2-(octadecanoyloxy)-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:1(9Z)-O(12,13)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/18:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(a-15:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-15:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-15:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(i-15:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-15:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H69O10P (716.4628104)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-15:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/18:1(12Z)-O(9S,10R))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(i-18:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-O(9S,10R)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:1(12Z)-O(9S,10R)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-O(9S,10R)/i-18:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-18:0/18:1(9Z)-O(12,13))

[(2R)-3-[(16-methylheptadecanoyl)oxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(i-18:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-18:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 16-methylheptadecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(9Z)-O(12,13)/i-18:0)

[(2R)-2-[(16-methylheptadecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphonic acid

C39H73O9P (716.4991938)


PA(18:1(9Z)-O(12,13)/i-18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(9Z)-O(12,13)/i-18:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 16-methylheptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Rhodopin glucoside

1-(beta-D-Glucopyranosyloxy)-1,2-dihydro-psi,psi-carotene

C46H68O6 (716.5015628000001)


   

3-(E)-Coumaroylbetulin-28-yl ethyl succinate

(+)-3-(E)-Coumaroylbetulin-28-yl ethyl succinate

C45H64O7 (716.4651793999999)


   
   

1-(beta-D-Glucopyranosyloxy)-1,2-dihydro-beta,psi-carotene

1-(beta-D-Glucopyranosyloxy)-1,2-dihydro-beta,psi-carotene

C46H68O6 (716.5015628000001)


   
   

Rhodopin β-D-glucoside/ Rhodopin glucoside

Rhodopin β-D-glucoside/ Rhodopin glucoside

C46H68O6 (716.5015628000001)


   

1-OH-γ-carotene glucoside/ (Carotenoids B-G)

1-OH-γ-carotene glucoside/ (Carotenoids B-G)

C46H68O6 (716.5015628000001)


   

DG(22:5/22:5/0:0)

DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

C47H72O5 (716.5379462)


   

DG(22:4/22:6/0:0)[iso2]

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C47H72O5 (716.5379462)


   

Diglyceride

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13Z,16Z)/0:0)

C47H72O5 (716.5379462)


   

PG(12:0/20:3(8Z,11Z,14Z))

1-dodecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(14:0/18:3(6Z,9Z,12Z))

1-tetradecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(14:1(9Z)/18:2(9Z,12Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(15:1(9Z)/17:2(9Z,12Z))

1-(9Z-pentadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(17:2(9Z,12Z)/15:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(18:2(9Z,12Z)/14:1(9Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(18:3(6Z,9Z,12Z)/14:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(18:3(9Z,12Z,15Z)/14:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(20:3(8Z,11Z,14Z)/12:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(14:0/18:3(9Z,12Z,15Z))

1-tetradecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG(P-16:0/17:2(9Z,12Z))

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H73O9P (716.4991938)


   

PA(15:0/22:1(11Z))

1-pentadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(15:1(9Z)/22:0)

1-(9Z-pentadecenoyl)-2-docosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(16:1(9Z)/21:0)

1-(9Z-hexadecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(17:0/20:1(11Z))

1-heptadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(17:1(9Z)/20:0)

1-(9Z-heptadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(18:0/19:1(9Z))

1-octadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(18:1(9Z)/19:0)

1-(9Z-octadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(18:3(6Z,9Z,12Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(19:0/18:1(9Z))

1-nonadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(19:1(9Z)/18:0)

1-(9Z-nonadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(20:0/17:1(9Z))

1-eicosanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(20:1(11Z)/17:0)

1-(11Z-eicosenoyl)-2-heptadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(20:4(5Z,8Z,11Z,14Z)/18:4(6Z,9Z,12Z,15Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(9Z,12Z,15Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

PA(21:0/16:1(9Z))

1-heneicosanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(22:0/15:1(9Z))

1-docosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA(22:1(11Z)/15:0)

1-(11Z-docosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

DG 44:10

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C47H72O5 (716.5379462)


   

PG 32:3

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H69O10P (716.4628104)


   

PG O-33:3

1-(1Z-hexadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C39H73O9P (716.4991938)


   

PA 37:1

1-heneicosanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

PA 38:8

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C41H65O8P (716.441682)


   

Demethylspheroidene glucoside

1-Glucosyloxy-3,4-didehydro-1,2,7,8-tetrahydro-psi,psi-carotene

C46H68O6 (716.5015628000001)


   

2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate

2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate

C43H73O6P (716.5144487999999)


   

Phosphatidyl ethanol

Phosphatidyl ethanol

C39H73O9P (716.4991938)


   

1-Osbondoyl-3-osbondoyl-sn-glycerol

1-Osbondoyl-3-osbondoyl-sn-glycerol

C47H72O5 (716.5379462)


   

PA(18:0/18:1(12Z)-O(9S,10R))

PA(18:0/18:1(12Z)-O(9S,10R))

C39H73O9P (716.4991938)


   

PA(18:1(12Z)-O(9S,10R)/18:0)

PA(18:1(12Z)-O(9S,10R)/18:0)

C39H73O9P (716.4991938)


   

PA(i-18:0/18:1(12Z)-O(9S,10R))

PA(i-18:0/18:1(12Z)-O(9S,10R))

C39H73O9P (716.4991938)


   

PA(18:1(12Z)-O(9S,10R)/i-18:0)

PA(18:1(12Z)-O(9S,10R)/i-18:0)

C39H73O9P (716.4991938)


   

PA(i-18:0/18:1(9Z)-O(12,13))

PA(i-18:0/18:1(9Z)-O(12,13))

C39H73O9P (716.4991938)


   

PA(18:1(9Z)-O(12,13)/i-18:0)

PA(18:1(9Z)-O(12,13)/i-18:0)

C39H73O9P (716.4991938)


   

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H73O9P (716.4991938)


   

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C39H73O9P (716.4991938)


   

PA(15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C38H69O10P (716.4628104)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/15:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/15:0)

C38H69O10P (716.4628104)


   

PA(a-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(a-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C38H69O10P (716.4628104)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-15:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/a-15:0)

C38H69O10P (716.4628104)


   

PA(i-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-15:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C38H69O10P (716.4628104)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-15:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-15:0)

C38H69O10P (716.4628104)


   

Veraguamide E

Veraguamide E

C39H64N4O8 (716.4723904)


A natural product found in Symploca hydnoides.

   

N-palmitoyl-1-oleoyl-sn-glycero-3-phosphoethanolamine(1-)

N-palmitoyl-1-oleoyl-sn-glycero-3-phosphoethanolamine(1-)

C39H75NO8P- (716.523002)


   

2,3-Bis-O-(geranylgeranyl)glycerol 1-phosphate

2,3-Bis-O-(geranylgeranyl)glycerol 1-phosphate

C43H73O6P (716.5144487999999)


   

2-[[(2R)-2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-heptadec-9-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] heptadecanoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-tridec-9-enoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] undecanoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] tridecanoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H73O9P (716.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] pentadecanoate

C39H73O9P (716.4991938)


   

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

C47H72O5 (716.5379462)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C47H72O5 (716.5379462)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C47H72O5 (716.5379462)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C47H72O5 (716.5379462)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C47H72O5 (716.5379462)


   

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C47H72O5 (716.5379462)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C47H72O5 (716.5379462)


   

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C47H72O5 (716.5379462)


   

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H72O5 (716.5379462)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octoxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octoxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C47H72O5 (716.5379462)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

6-[2,3-Di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2,3-Di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H72O11 (716.5074362)


   

6-(3-Heptadecanoyloxy-2-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(3-Heptadecanoyloxy-2-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H72O11 (716.5074362)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C41H64O10 (716.4499244)


   

6-(2-Dodecanoyloxy-3-octadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(2-Dodecanoyloxy-3-octadecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H72O11 (716.5074362)


   

6-(3-Hexadecanoyloxy-2-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(3-Hexadecanoyloxy-2-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H72O11 (716.5074362)


   

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H69N2O6P (716.4892984)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C38H69O10P (716.4628104)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] hexadecanoate

C38H69O10P (716.4628104)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C38H69O10P (716.4628104)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C38H69O10P (716.4628104)


   

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-hexadec-9-enoate

C38H69O10P (716.4628104)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-docos-13-enoate

C40H77O8P (716.5355772)


   

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tricosanoate

[3-phosphonooxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] tricosanoate

C40H77O8P (716.5355772)


   

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-nonadec-9-enoate

C40H77O8P (716.5355772)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-hexadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-hexadec-9-enoate

C38H69O10P (716.4628104)


   

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H65O8P (716.441682)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-henicos-11-enoate

C40H77O8P (716.5355772)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-hexacos-15-enoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (Z)-hexacos-15-enoate

C40H77O8P (716.5355772)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H65O8P (716.441682)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C38H69O10P (716.4628104)


   

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H65O8P (716.441682)


   

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C47H72O5 (716.5379462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C38H69O10P (716.4628104)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H65O8P (716.441682)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] hexadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] hexadecanoate

C38H69O10P (716.4628104)


   

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[2-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C40H77O8P (716.5355772)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (Z)-icos-11-enoate

C40H77O8P (716.5355772)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C38H69O10P (716.4628104)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C41H65O8P (716.441682)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C40H77O8P (716.5355772)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C41H65O8P (716.441682)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (Z)-tetracos-13-enoate

C40H77O8P (716.5355772)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

C40H77O8P (716.5355772)


   

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] tetracosanoate

[3-phosphonooxy-2-[(Z)-tridec-9-enoyl]oxypropyl] tetracosanoate

C40H77O8P (716.5355772)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C46H68O6 (716.5015628000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C46H68O6 (716.5015628000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C46H68O6 (716.5015628000001)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C46H68O6 (716.5015628000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C46H68O6 (716.5015628000001)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H65O8P (716.441682)


   

2-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C40H77O8P (716.5355772)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H69O10P (716.4628104)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H65O8P (716.441682)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C41H65O8P (716.441682)


   

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C38H69O10P (716.4628104)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tricosanoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] tricosanoate

C40H77O8P (716.5355772)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (E)-tetracos-15-enoate

C40H77O8P (716.5355772)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H65O8P (716.441682)


   

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C38H69O10P (716.4628104)


   

2-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C47H72O5 (716.5379462)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H65O8P (716.441682)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate

C40H77O8P (716.5355772)


   

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

2-[hydroxy-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-tetracos-15-enoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (E)-tetracos-15-enoate

C40H77O8P (716.5355772)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C38H69O10P (716.4628104)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-icos-13-enoate

C40H77O8P (716.5355772)


   

2-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

C40H77O8P (716.5355772)


   

2-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H65O8P (716.441682)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C41H65O8P (716.441682)


   

2-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2S)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C47H72O5 (716.5379462)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoate

C41H65O8P (716.441682)


   

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C38H69O10P (716.4628104)


   

2-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C41H64O10 (716.4499244)


   

2-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H65O8P (716.441682)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H69O10P (716.4628104)


   

2-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C41H64O10 (716.4499244)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] hexadecanoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] hexadecanoate

C38H69O10P (716.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C38H69O10P (716.4628104)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] docosanoate

C40H77O8P (716.5355772)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H65O8P (716.441682)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C38H69O10P (716.4628104)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H69O10P (716.4628104)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C38H69O10P (716.4628104)


   

2-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C40H77O8P (716.5355772)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate

C40H77O8P (716.5355772)


   

2-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H65O8P (716.441682)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C41H64O10 (716.4499244)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C41H65O8P (716.441682)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H69O10P (716.4628104)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-hexadec-7-enoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-hexadec-7-enoate

C38H69O10P (716.4628104)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexacos-5-enoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (E)-hexacos-5-enoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C40H77O8P (716.5355772)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (E)-hexacos-5-enoate

C40H77O8P (716.5355772)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (13E,16E,19E)-docosa-13,16,19-trienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (13E,16E,19E)-docosa-13,16,19-trienoate

C41H65O8P (716.441682)


   

2-[hydroxy-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

2-[[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] icosanoate

C40H77O8P (716.5355772)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

2-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] henicosanoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-6-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C47H72O5 (716.5379462)


   

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C38H69O10P (716.4628104)


   

2-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C38H69O10P (716.4628104)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C40H77O8P (716.5355772)


   

2-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H65O8P (716.441682)


   

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

[(2R)-1-[(E)-octadec-4-enoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C38H69O10P (716.4628104)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] tricosanoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H65O8P (716.441682)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C41H64O10 (716.4499244)


   

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H65O8P (716.441682)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] henicosanoate

C40H77O8P (716.5355772)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C38H69O10P (716.4628104)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] nonadecanoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] nonadecanoate

C40H77O8P (716.5355772)


   

2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[3-decanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[3-heptanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H75NO8P+ (716.523002)


   

2-[carboxy-[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C42H70NO8+ (716.510116)


   

2-[carboxy-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C42H70NO8+ (716.510116)


   

2-[carboxy-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C42H70NO8+ (716.510116)


   

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

C42H70NO8+ (716.510116)


   

2-[carboxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C42H70NO8+ (716.510116)


   

2,3-bis-O-(geranylgeranyl)-sn-glycerol 1-phosphate

2,3-bis-O-(geranylgeranyl)-sn-glycerol 1-phosphate

C43H73O6P (716.5144487999999)


   

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C47H72O5 (716.5379462)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate

C40H77O8P (716.5355772)


   

1-(9Z-pentadecenoyl)-2-docosanoyl-glycero-3-phosphate

1-(9Z-pentadecenoyl)-2-docosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(9Z-hexadecenoyl)-2-heneicosanoyl-glycero-3-phosphate

1-(9Z-hexadecenoyl)-2-heneicosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(9Z-nonadecenoyl)-2-octadecanoyl-glycero-3-phosphate

1-(9Z-nonadecenoyl)-2-octadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(9Z-heptadecenoyl)-2-eicosanoyl-glycero-3-phosphate

1-(9Z-heptadecenoyl)-2-eicosanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-octadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

1-octadecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(9Z-octadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

1-(9Z-octadecenoyl)-2-nonadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-nonadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

1-nonadecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-eicosanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

1-eicosanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-heneicosanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

1-heneicosanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-docosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

1-docosanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-pentadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

1-pentadecanoyl-2-(11Z-docosenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-heptadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

1-heptadecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(11Z-eicosenoyl)-2-heptadecanoyl-glycero-3-phosphate

1-(11Z-eicosenoyl)-2-heptadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

1-(11Z-docosenoyl)-2-pentadecanoyl-glycero-3-phosphate

1-(11Z-docosenoyl)-2-pentadecanoyl-glycero-3-phosphate

C40H77O8P (716.5355772)


   

phosphatidylglycerol 32:3

phosphatidylglycerol 32:3

C38H69O10P (716.4628104)


   

TG(44:10)

TG(20:4(1)_10:2_14:4)

C47H72O5 (716.5379462)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(35:1)

BisMePA(19:1_16:0)

C40H77O8P (716.5355772)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(36:1)

PMe(18:0_18:1)

C40H77O8P (716.5355772)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-16:0/17:2 or PG O-16:1/17:2

PG P-16:0/17:2 or PG O-16:1/17:2

C39H73O9P (716.4991938)


   
   

PG P-16:1/17:1 or PG O-16:2/17:1

PG P-16:1/17:1 or PG O-16:2/17:1

C39H73O9P (716.4991938)


   
   

PG P-18:1/15:1 or PG O-18:2/15:1

PG P-18:1/15:1 or PG O-18:2/15:1

C39H73O9P (716.4991938)


   
   
   

PG P-33:2 or PG O-33:3

PG P-33:2 or PG O-33:3

C39H73O9P (716.4991938)


   
   
   
   
   
   
   
   
   
   
   

bis-O-(Geranylgeranyl)glycerol phosphate

bis-O-(Geranylgeranyl)glycerol phosphate

C43H73O6P (716.5144487999999)


   
   
   
   
   
   

(3s,4z,6e,8z,10e,12z,14s,15r,16r)-15-hydroxy-16-[(2s,3r,5r,6s,8r,9s,10r)-5-hydroxy-8-[(2s,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

(3s,4z,6e,8z,10e,12z,14s,15r,16r)-15-hydroxy-16-[(2s,3r,5r,6s,8r,9s,10r)-5-hydroxy-8-[(2s,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

(3s,6r,7s,10s,13r,16s,21as)-3,13-bis[(2r)-butan-2-yl]-16-[(2s)-butan-2-yl]-8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13r,16s,21as)-3,13-bis[(2r)-butan-2-yl]-16-[(2s)-butan-2-yl]-8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C39H64N4O8 (716.4723904)


   

(3s,4z,6z,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

(3s,4z,6z,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

15-hydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethylnon-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

15-hydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethylnon-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

(3s,4z,6e,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5r,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

(3s,4z,6e,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5r,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

1-[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl]methyl 4-ethyl butanedioate

1-[(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl]methyl 4-ethyl butanedioate

C45H64O7 (716.4651793999999)


   

(3s,6r,7s,10s,13s,16s,21as)-10,13,16-tris[(2s)-butan-2-yl]-8-hydroxy-3-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-10,13,16-tris[(2s)-butan-2-yl]-8-hydroxy-3-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C39H64N4O8 (716.4723904)


   

(3s,6r,7s,10s,13s,16s,21as)-3-[(2r)-butan-2-yl]-13,16-bis[(2s)-butan-2-yl]-8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-3-[(2r)-butan-2-yl]-13,16-bis[(2s)-butan-2-yl]-8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C39H64N4O8 (716.4723904)


   

8-hydroxy-3-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-10,13,16-tris(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

8-hydroxy-3-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-10,13,16-tris(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C39H64N4O8 (716.4723904)


   

1-ethyl 4-(9-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl)methyl butanedioate

1-ethyl 4-(9-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl)methyl butanedioate

C45H64O7 (716.4651793999999)


   

(1r,3s,3ar,5ar,7r,9as,11ar)-3-hydroxy-1-[(2r)-1-[(3-methoxy-3-oxopropanoyl)oxy]-6-methylhept-5-en-2-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl 1-methyl (3s)-3-hydroxy-3-methylpentanedioate

(1r,3s,3ar,5ar,7r,9as,11ar)-3-hydroxy-1-[(2r)-1-[(3-methoxy-3-oxopropanoyl)oxy]-6-methylhept-5-en-2-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl 1-methyl (3s)-3-hydroxy-3-methylpentanedioate

C41H64O10 (716.4499244)


   

1-[(1r,3as,5ar,5br,7ar,9s,11as,11br,13ar,13bs)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl]methyl 4-ethyl butanedioate

1-[(1r,3as,5ar,5br,7ar,9s,11as,11br,13ar,13bs)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-3a-yl]methyl 4-ethyl butanedioate

C45H64O7 (716.4651793999999)


   

(2r,3s,8s,13r,14s,19s)-8,19-dibutyl-3,14-dimethyl-13-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}tricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaene-2,10,21,24,26-pentol

(2r,3s,8s,13r,14s,19s)-8,19-dibutyl-3,14-dimethyl-13-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}tricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaene-2,10,21,24,26-pentol

C41H64O10 (716.4499244)


   

(2s,3r,4s,5s,6r)-2-{[(6e,8e,10e,12e,14e,16e,18e,20e,22e,24e)-2,6,10,14,19,23-hexamethyl-25-(2,6,6-trimethylcyclohex-1-en-1-yl)pentacosa-6,8,10,12,14,16,18,20,22,24-decaen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(6e,8e,10e,12e,14e,16e,18e,20e,22e,24e)-2,6,10,14,19,23-hexamethyl-25-(2,6,6-trimethylcyclohex-1-en-1-yl)pentacosa-6,8,10,12,14,16,18,20,22,24-decaen-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C46H68O6 (716.5015628000001)


   

8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,13,16-tris(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

8-hydroxy-10-isopropyl-2,7,12-trimethyl-6-(pent-4-yn-1-yl)-3,13,16-tris(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C39H64N4O8 (716.4723904)


   

(3s,4z,6e,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

(3s,4z,6e,8z,10e,12z,14s,15s,16s)-15-hydroxy-16-[(2s,3s,5s,6r,8r,9r,10r)-5-hydroxy-8-[(2r,3s,4s,6e)-3-hydroxy-4,6-dimethylnon-6-en-2-yl]-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

(10e)-15-hydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethylnon-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

(10e)-15-hydroxy-16-[5-hydroxy-8-(3-hydroxy-4,6-dimethylnon-6-en-2-yl)-10-methoxy-3,9-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-3-methoxy-14-methylheptadeca-4,6,8,10,12-pentaenoic acid

C42H68O9 (716.4863078000001)


   

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-5-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-9-{[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy}-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

3-[(3s,3as,5r,5ar,6r,7r,9r,9ar)-5-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-9-{[(2r,3e)-2-hydroxy-3-methylpent-3-enoyl]oxy}-7-(2-hydroxypropan-2-yl)-3a,6,9a-trimethyl-3-[(3s,5s)-5-(2-methylprop-1-en-1-yl)oxolan-3-yl]-2h,3h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

C41H64O10 (716.4499244)