Exact Mass: 716.3805

Exact Mass Matches: 716.3805

Found 165 metabolites which its exact mass value is equals to given mass value 716.3805, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Amatain

Subssesiline

C43H48N4O6 (716.3574)


   

Spinoside A

acetic acid [(3S,4S,5R,6S)-5-acetoxy-6-[[(8R,9R,10S,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2-hydroxy-3-keto-4,4,9,13,14-pentamethyl-7,8,10,11,12,15,16,17-octahydrocyclopenta[a]phenanthren-16-yl]oxy]-4-hydroxy-tetrahydrop

C39H56O12 (716.3772)


   

Lyciumoside IX

3-oxo-3-[(3,4,5-trihydroxy-6-{[(6E,10Z,14E)-3,7,11,15-tetramethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadeca-1,6,10,14-tetraen-3-yl]oxy}oxan-2-yl)methoxy]propanoic acid

C35H56O15 (716.3619)


Constituent of Lycium chinense (Chinese boxthorn). Lyciumoside IX is found in tea, coffee and coffee products, and herbs and spices. Lyciumoside IX is found in coffee and coffee products. Lyciumoside IX is a constituent of Lycium chinense (Chinese boxthorn).

   

Neocasomorphin

(4S)-4-{[(2S)-2-({[(2S)-1-[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-1-hydroxy-3-methylbutylidene]amino}-5-[(2S)-2-{[(1S,2S)-1-carboxy-2-methylbutyl]-C-hydroxycarbonimidoyl}pyrrolidin-1-yl]-5-oxopentanoate

C35H52N6O10 (716.3745)


Neocasomorphin belongs to the class of organic compounds known as peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by the formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. Neocasomorphin is a very strong basic compound (based on its pKa).

   

Val-glu-pro-ile-pro-tyr

4-[(2-Amino-1-hydroxy-3-methylbutylidene)amino]-5-(2-{[1-(2-{[1-carboxy-2-(4-hydroxyphenyl)ethyl]-C-hydroxycarbonimidoyl}pyrrolidin-1-yl)-3-methyl-1-oxopentan-2-yl]-C-hydroxycarbonimidoyl}pyrrolidin-1-yl)-5-oxopentanoate

C35H52N6O10 (716.3745)


   

PA(14:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/PGE2), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/14:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGE2/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/14:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/PGD2), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/14:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGD2/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/14:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-(tetradecanoyloxy)-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:0)

[(2R)-2-(tetradecanoyloxy)-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:1(9Z)/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/PGF2alpha), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/14:1(9Z))

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGF2alpha/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/14:1(9Z)), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:1(9Z)/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/PGE1), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/14:1(9Z))

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGE1/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/14:1(9Z)), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(14:1(9Z)/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/PGD1), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/14:1(9Z))

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGD1/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/14:1(9Z)), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:1(9Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(16:1(9Z)/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:1(9Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z)-hexadec-9-enoyloxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(16:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-hexadecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(i-14:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/PGE2), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/i-14:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGE2/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/i-14:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(i-14:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/PGD2), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/i-14:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(PGD2/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/i-14:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H65O11P (716.4264)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   

21,23-epoxy-3alpha,7alpha,21,24,25-pentaacetoxy-4alpha,4beta,8beta-trimethyl-14,18-cyclo-5alpha,13alpha,14alpha,17alpha-cholestane

21,23-epoxy-3alpha,7alpha,21,24,25-pentaacetoxy-4alpha,4beta,8beta-trimethyl-14,18-cyclo-5alpha,13alpha,14alpha,17alpha-cholestane

C40H60O11 (716.4135)


   

5-(3-Methylamino-3-phenylpropanoyl)nicotaxine|O-(methylamino-3 phenyl-3 propionyl)-5alpha nicotaxine

5-(3-Methylamino-3-phenylpropanoyl)nicotaxine|O-(methylamino-3 phenyl-3 propionyl)-5alpha nicotaxine

C40H48N2O10 (716.3309)


   

2-deoxy-vobtusine lactam|8-oxo-2-deoxy-vobtusine|Desoxyvobtusinlactam (2-Desoxyvobtusin-3-on)|ent-6beta,21;6beta,21-diepoxy-17-methoxy-8-oxo-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester

2-deoxy-vobtusine lactam|8-oxo-2-deoxy-vobtusine|Desoxyvobtusinlactam (2-Desoxyvobtusin-3-on)|ent-6beta,21;6beta,21-diepoxy-17-methoxy-8-oxo-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester

C43H48N4O6 (716.3574)


   

Euphoreppine B

Euphoreppine B

C38H52O13 (716.3408)


   

2,22beta-epoxy-2-deoxy-vobtusine|ent-6beta,21;2,4alpha;6beta,21-triepoxy-17-methoxy-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester|Quimbelin|Quimbeline

2,22beta-epoxy-2-deoxy-vobtusine|ent-6beta,21;2,4alpha;6beta,21-triepoxy-17-methoxy-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester|Quimbelin|Quimbeline

C43H48N4O6 (716.3574)


   
   
   
   

2-deoxycucurbitacin F 16-O-(2?,3?-di-O-acetyl-4?-deoxy-alpha-allopyranoside)|datiscoside N

2-deoxycucurbitacin F 16-O-(2?,3?-di-O-acetyl-4?-deoxy-alpha-allopyranoside)|datiscoside N

C40H60O11 (716.4135)


   
   

16-Desoxy-18-oxo-vobtusin|2-Deoxy-18-oxovobtusine|21-oxo-(2xi)-2-deoxy-vobtusine|ent-6beta,21-epoxy-6beta-hydroxy-17-methoxy-2,3-didehydro-(7betaC4,2xi,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-(pyrido[1,2,3:1,2,3]-21-nor-aspidospermidine)]-3,20-dicarboxylic acid 20-lactone 3-methyl ester

16-Desoxy-18-oxo-vobtusin|2-Deoxy-18-oxovobtusine|21-oxo-(2xi)-2-deoxy-vobtusine|ent-6beta,21-epoxy-6beta-hydroxy-17-methoxy-2,3-didehydro-(7betaC4,2xi,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-(pyrido[1,2,3:1,2,3]-21-nor-aspidospermidine)]-3,20-dicarboxylic acid 20-lactone 3-methyl ester

C43H48N4O6 (716.3574)


   

aleppicatine B

aleppicatine B

C38H52O13 (716.3408)


   

1alpha,7alpha,11beta-triacetoxy-4alpha-carbomethoxy-12alpha-(2-methylbutanoyloxy)-14beta,15beta-epoxyhavanensin

1alpha,7alpha,11beta-triacetoxy-4alpha-carbomethoxy-12alpha-(2-methylbutanoyloxy)-14beta,15beta-epoxyhavanensin

C38H52O13 (716.3408)


   

Phe Tyr Phe Lys Ile

Phe Tyr Phe Lys Ile

C39H52N6O7 (716.3897)


   

Pleiokomenine A

Pleiokomenine A

C45H56N4O4 (716.4301)


   

Subsessiline

Subsessiline

C43H48N4O6 (716.3574)


Annotation level-1

   

FYFKI

Phe-Tyr-Phe-Lys-Ile

C39H52N6O7 (716.3897)


   

4-Ketonostoxanthin 3-sulfate

4-Ketonostoxanthin 3-sulfate

C40H53NaO8S (716.3359)


   

Lyciumoside IX

3-oxo-3-[(3,4,5-trihydroxy-6-{[(6E,10Z,14E)-3,7,11,15-tetramethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexadeca-1,6,10,14-tetraen-3-yl]oxy}oxan-2-yl)methoxy]propanoic acid

C35H56O15 (716.3619)


   

Ethyl 4-(2-hydroxy-2-propanyl)-2-propyl-1-{[2-(1-trityl-1H-tetra zol-5-yl)-4-biphenylyl]methyl}-1H-imidazole-5-carboxylate

Ethyl 4-(2-hydroxy-2-propanyl)-2-propyl-1-{[2-(1-trityl-1H-tetra zol-5-yl)-4-biphenylyl]methyl}-1H-imidazole-5-carboxylate

C45H44N6O3 (716.3475)


   

ethyl 5-(2-hydroxypropan-2-yl)-2-propyl-3-[[4-[2-(1-trityltetrazol-5-yl)phenyl]phenyl]methyl]imidazole-4-carboxylate

ethyl 5-(2-hydroxypropan-2-yl)-2-propyl-3-[[4-[2-(1-trityltetrazol-5-yl)phenyl]phenyl]methyl]imidazole-4-carboxylate

C45H44N6O3 (716.3475)


   

Tris(dipivaloylmethanato)dysprosium

Tris(dipivaloylmethanato)dysprosium

C33H60DyO6 (716.3681)


   

Neocasomorphin

Neocasomorphin

C35H52N6O10 (716.3745)


A six amino acid oligopeptide fragment of the human milk protein, beta-casein.

   

PA(i-14:0/PGE2)

PA(i-14:0/PGE2)

C37H65O11P (716.4264)


   

PA(PGE2/i-14:0)

PA(PGE2/i-14:0)

C37H65O11P (716.4264)


   

PA(i-14:0/PGD2)

PA(i-14:0/PGD2)

C37H65O11P (716.4264)


   

PA(PGD2/i-14:0)

PA(PGD2/i-14:0)

C37H65O11P (716.4264)


   

PA(14:1(9Z)/PGF2alpha)

PA(14:1(9Z)/PGF2alpha)

C37H65O11P (716.4264)


   

PA(PGF2alpha/14:1(9Z))

PA(PGF2alpha/14:1(9Z))

C37H65O11P (716.4264)


   
   
   
   
   

PA(14:1(9Z)/PGE1)

PA(14:1(9Z)/PGE1)

C37H65O11P (716.4264)


   

PA(PGE1/14:1(9Z))

PA(PGE1/14:1(9Z))

C37H65O11P (716.4264)


   

PA(14:1(9Z)/PGD1)

PA(14:1(9Z)/PGD1)

C37H65O11P (716.4264)


   

PA(PGD1/14:1(9Z))

PA(PGD1/14:1(9Z))

C37H65O11P (716.4264)


   

PA(16:1(9Z)/5-iso PGF2VI)

PA(16:1(9Z)/5-iso PGF2VI)

C37H65O11P (716.4264)


   

PA(14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C37H65O11P (716.4264)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/14:0)

C37H65O11P (716.4264)


   

PA(16:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(16:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H65O11P (716.4264)


   

PA(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(i-14:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C37H65O11P (716.4264)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-14:0)

C37H65O11P (716.4264)


   

methyl (16R,21S)-6-[[(1R,9R,16R,21S)-18-methoxycarbonyl-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-trien-6-yl]methyl]-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate

methyl (16R,21S)-6-[[(1R,9R,16R,21S)-18-methoxycarbonyl-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-trien-6-yl]methyl]-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate

C45H56N4O4 (716.4301)


   

Smgdg O-9:0_18:5

Smgdg O-9:0_18:5

C36H60O12S (716.3805)


   

Smgdg O-22:5_5:0

Smgdg O-22:5_5:0

C36H60O12S (716.3805)


   

Smgdg O-20:5_7:0

Smgdg O-20:5_7:0

C36H60O12S (716.3805)


   

Smgdg O-18:5_9:0

Smgdg O-18:5_9:0

C36H60O12S (716.3805)


   

Smgdg O-24:5_3:0

Smgdg O-24:5_3:0

C36H60O12S (716.3805)


   

Dgdg O-18:4_3:0

Dgdg O-18:4_3:0

C36H60O14 (716.3983)


   

Dgdg O-16:4_5:0

Dgdg O-16:4_5:0

C36H60O14 (716.3983)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C35H56O15 (716.3619)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C35H56O15 (716.3619)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C35H57O13P (716.3537)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C35H57O13P (716.3537)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C35H57O13P (716.3537)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H63NO8P+ (716.4291)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H60O12S (716.3805)


   

2-[[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H63NO8P+ (716.4291)


   

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C35H57O13P (716.3537)


   

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C35H57O13P (716.3537)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C36H60O12S (716.3805)


   

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(E)-dec-4-enoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C35H57O13P (716.3537)


   

Amataine

Amataine

C43H48N4O6 (716.3574)


A polycyclic indole alkaloid that is obtained from the root bark of Voacanga africana.

   

DGDG O-20:5;O

DGDG O-20:5;O

C35H56O15 (716.3619)


   
   
   
   
   
   
   
   
   
   

PA 14:0/20:4;O3

PA 14:0/20:4;O3

C37H65O11P (716.4264)


   

PA 14:1/20:3;O3

PA 14:1/20:3;O3

C37H65O11P (716.4264)


   

PA 22:1/12:3;O3

PA 22:1/12:3;O3

C37H65O11P (716.4264)


   

PA 22:2/12:2;O3

PA 22:2/12:2;O3

C37H65O11P (716.4264)


   
   

HBMP 30:4;O

HBMP 30:4;O

C36H61O12P (716.39)


   
   

PG O-30:6;O3

PG O-30:6;O3

C36H61O12P (716.39)


   
   

PG P-18:0/13:4;O2

PG P-18:0/13:4;O2

C37H65O11P (716.4264)


   

PG P-18:1/12:4;O3

PG P-18:1/12:4;O3

C36H61O12P (716.39)


   

PG P-18:1/13:3;O2

PG P-18:1/13:3;O2

C37H65O11P (716.4264)


   
   

PG 18:2/12:3;O2

PG 18:2/12:3;O2

C36H61O12P (716.39)


   

PG 18:3/11:3;O3

PG 18:3/11:3;O3

C35H57O13P (716.3537)


   

PG 18:3/12:2;O2

PG 18:3/12:2;O2

C36H61O12P (716.39)


   
   

PG 22:2/8:3;O2

PG 22:2/8:3;O2

C36H61O12P (716.39)


   
   

PG 22:4/8:1;O2

PG 22:4/8:1;O2

C36H61O12P (716.39)


   
   
   
   
   

PI P-18:1/8:4;O

PI P-18:1/8:4;O

C35H57O13P (716.3537)


   
   
   
   
   
   

Ketonostoxanthin sulfate

Ketonostoxanthin sulfate

C40H53NaO8S (716.3359)


   

16-benzyl-14,18,24-trihydroxy-3-(2-hydroxypropan-2-yl)-4,20-dimethyl-13-(sec-butyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacos-17-ene-2,5,12,15,21-pentone

16-benzyl-14,18,24-trihydroxy-3-(2-hydroxypropan-2-yl)-4,20-dimethyl-13-(sec-butyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacos-17-ene-2,5,12,15,21-pentone

C34H52N8O9 (716.3857)


   

(1s,2r,3r,6e,8s,9s,10s,12r,16s)-9-{[(2s,3r,4s,6r)-3,4-dihydroxy-4-[(1s)-1-hydroxyethyl]-6-methyloxan-2-yl]oxy}-2-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-3,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadec-6-ene-5,13-dione

(1s,2r,3r,6e,8s,9s,10s,12r,16s)-9-{[(2s,3r,4s,6r)-3,4-dihydroxy-4-[(1s)-1-hydroxyethyl]-6-methyloxan-2-yl]oxy}-2-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-3,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadec-6-ene-5,13-dione

C36H60O14 (716.3983)


   

[(3s,4s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,9,10-tris(acetyloxy)-8a-[(acetyloxy)methyl]-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-4-yl]methyl acetate

[(3s,4s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,9,10-tris(acetyloxy)-8a-[(acetyloxy)methyl]-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-4-yl]methyl acetate

C40H60O11 (716.4135)


   

(1s)-1-(acetyloxy)-1-[(2r,4s,5s)-5-(acetyloxy)-4-[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-3,7-bis(acetyloxy)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-15-yl]oxolan-2-yl]-2-methylpropan-2-yl acetate

(1s)-1-(acetyloxy)-1-[(2r,4s,5s)-5-(acetyloxy)-4-[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-3,7-bis(acetyloxy)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-15-yl]oxolan-2-yl]-2-methylpropan-2-yl acetate

C40H60O11 (716.4135)


   

3-hydroxy-6-{3-hydroxy-4,11,12-trimethoxy-17-methyl-13-oxo-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5,11-tetraen-6-yl}-4,11,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

3-hydroxy-6-{3-hydroxy-4,11,12-trimethoxy-17-methyl-13-oxo-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5,11-tetraen-6-yl}-4,11,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

C40H48N2O10 (716.3309)


   

(6r)-6-[(1r,3ar,5ar,6s,7s,9as,11s,11ar)-11-(acetyloxy)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-7-hydroxy-3a,6,9a,11a-tetramethyl-3,4,10-trioxo-1h,2h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

(6r)-6-[(1r,3ar,5ar,6s,7s,9as,11s,11ar)-11-(acetyloxy)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-7-hydroxy-3a,6,9a,11a-tetramethyl-3,4,10-trioxo-1h,2h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C38H52O13 (716.3408)


   

6-[11-(acetyloxy)-6-{[(4-carboxy-3-hydroxy-3-methylbutanoyl)oxy]methyl}-4-hydroxy-3a,6,9a,11a-tetramethyl-3,7,10-trioxo-1h,2h,4h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

6-[11-(acetyloxy)-6-{[(4-carboxy-3-hydroxy-3-methylbutanoyl)oxy]methyl}-4-hydroxy-3a,6,9a,11a-tetramethyl-3,7,10-trioxo-1h,2h,4h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C38H52O13 (716.3408)


   

(3e,5s,6s,7s,9s,13e,15r,16r)-6-{[(2s,3r,4s,6r)-3,4-dihydroxy-4-[(1s)-1-hydroxyethyl]-6-methyloxan-2-yl]oxy}-9-hydroxy-15-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-5,7,9,16-tetramethyl-1-oxacyclohexadeca-3,13-diene-2,10-dione

(3e,5s,6s,7s,9s,13e,15r,16r)-6-{[(2s,3r,4s,6r)-3,4-dihydroxy-4-[(1s)-1-hydroxyethyl]-6-methyloxan-2-yl]oxy}-9-hydroxy-15-({[(2r,3r,4r,5r,6r)-5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl]oxy}methyl)-5,7,9,16-tetramethyl-1-oxacyclohexadeca-3,13-diene-2,10-dione

C36H60O14 (716.3983)


   

methyl 9,12,18-tris(acetyloxy)-6-(furan-3-yl)-14-hydroxy-1,7,11,15-tetramethyl-8-[(2-methylbutanoyl)oxy]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-15-carboxylate

methyl 9,12,18-tris(acetyloxy)-6-(furan-3-yl)-14-hydroxy-1,7,11,15-tetramethyl-8-[(2-methylbutanoyl)oxy]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-15-carboxylate

C38H52O13 (716.3408)


   

methyl 12-(2-hydroxyethyl)-14-{[12-(2-hydroxyethyl)-10-(methoxycarbonyl)-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9,13-pentaen-14-yl]methyl}-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9,13-pentaene-10-carboxylate

methyl 12-(2-hydroxyethyl)-14-{[12-(2-hydroxyethyl)-10-(methoxycarbonyl)-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9,13-pentaen-14-yl]methyl}-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6,9,13-pentaene-10-carboxylate

C43H48N4O6 (716.3574)


   

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methyldodecylidene)amino]butanediimidic acid

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methyldodecylidene)amino]butanediimidic acid

C37H56N4O10 (716.3996)


   

[3,9,10-tris(acetyloxy)-8a-[(acetyloxy)methyl]-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-4-yl]methyl acetate

[3,9,10-tris(acetyloxy)-8a-[(acetyloxy)methyl]-8-hydroxy-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-4-yl]methyl acetate

C40H60O11 (716.4135)


   

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methyldodecylidene)amino]butanediimidic acid

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methyldodecylidene)amino]butanediimidic acid

C37H56N4O10 (716.3996)


   

1-(acetyloxy)-1-[5-(acetyloxy)-4-[3,7-bis(acetyloxy)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-15-yl]oxolan-2-yl]-2-methylpropan-2-yl acetate

1-(acetyloxy)-1-[5-(acetyloxy)-4-[3,7-bis(acetyloxy)-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-15-yl]oxolan-2-yl]-2-methylpropan-2-yl acetate

C40H60O11 (716.4135)


   

4,8,15,16-tetrakis(acetyloxy)-5,9,12,12-tetramethyl-2-[(2-methylbut-2-enoyl)oxy]-17-oxapentacyclo[7.6.2.0¹,¹⁰.0³,⁷.0¹¹,¹³]heptadecan-7-yl 2-methylbut-2-enoate

4,8,15,16-tetrakis(acetyloxy)-5,9,12,12-tetramethyl-2-[(2-methylbut-2-enoyl)oxy]-17-oxapentacyclo[7.6.2.0¹,¹⁰.0³,⁷.0¹¹,¹³]heptadecan-7-yl 2-methylbut-2-enoate

C38H52O13 (716.3408)


   

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methylundecylidene)amino]pentanediimidic acid

n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methylundecylidene)amino]pentanediimidic acid

C37H56N4O10 (716.3996)


   

(1r,2r,3r,4s,5s,7r,8r,9r,10r,11s,13s,15s,16r)-4,8,15,16-tetrakis(acetyloxy)-5,9,12,12-tetramethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-17-oxapentacyclo[7.6.2.0¹,¹⁰.0³,⁷.0¹¹,¹³]heptadecan-7-yl (2e)-2-methylbut-2-enoate

(1r,2r,3r,4s,5s,7r,8r,9r,10r,11s,13s,15s,16r)-4,8,15,16-tetrakis(acetyloxy)-5,9,12,12-tetramethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-17-oxapentacyclo[7.6.2.0¹,¹⁰.0³,⁷.0¹¹,¹³]heptadecan-7-yl (2e)-2-methylbut-2-enoate

C38H52O13 (716.3408)


   

10-[(2s,4r,5r,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2s,4s,5r,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-[(2s,4e)-hex-4-en-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

10-[(2s,4r,5r,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2s,4s,5r,6s)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-[(2s,4e)-hex-4-en-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C41H52N2O9 (716.3673)


   

(1'r,2r,2'r,3'r,5's,8'r,9'r,10'r)-2',10'-bis(acetyloxy)-8',12',15',15'-tetramethyl-5'-{[(3r)-3-(methylamino)-3-phenylpropanoyl]oxy}-13'-oxospiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-9'-yl pyridine-3-carboxylate

(1'r,2r,2'r,3'r,5's,8'r,9'r,10'r)-2',10'-bis(acetyloxy)-8',12',15',15'-tetramethyl-5'-{[(3r)-3-(methylamino)-3-phenylpropanoyl]oxy}-13'-oxospiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-9'-yl pyridine-3-carboxylate

C40H48N2O10 (716.3309)


   

3,15-dibenzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

3,15-dibenzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C40H56N6O6 (716.4261)


   

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methylundecylidene)amino]pentanediimidic acid

(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methylundecylidene)amino]pentanediimidic acid

C37H56N4O10 (716.3996)


   

10-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-(hex-4-en-2-yl)-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

10-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-(hex-4-en-2-yl)-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C41H52N2O9 (716.3673)


   

(1s,10s)-3-hydroxy-6-[(1s,10s)-3-hydroxy-4,11,12-trimethoxy-17-methyl-13-oxo-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5,11-tetraen-6-yl]-4,11,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

(1s,10s)-3-hydroxy-6-[(1s,10s)-3-hydroxy-4,11,12-trimethoxy-17-methyl-13-oxo-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5,11-tetraen-6-yl]-4,11,12-trimethoxy-17-methyl-17-azatetracyclo[8.4.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,11-tetraen-13-one

C40H48N2O10 (716.3309)


   

(2e,6r)-6-[(1r,3ar,4s,5ar,6r,9as,11r,11ar)-11-(acetyloxy)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-4-hydroxy-3a,6,9a,11a-tetramethyl-3,7,10-trioxo-1h,2h,4h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

(2e,6r)-6-[(1r,3ar,4s,5ar,6r,9as,11r,11ar)-11-(acetyloxy)-6-({[(3s)-4-carboxy-3-hydroxy-3-methylbutanoyl]oxy}methyl)-4-hydroxy-3a,6,9a,11a-tetramethyl-3,7,10-trioxo-1h,2h,4h,5h,5ah,8h,9h,11h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-2-enoic acid

C38H52O13 (716.3408)


   

methyl (1's,3's,12r,18s,21'r,22r,24'r,26'r)-18'-methoxy-6',15,25'-trioxa-8,10',19,20'-tetraazaspiro[hexacyclo[10.9.1.0¹,⁹.0²,⁷.0¹²,¹⁶.0¹⁹,²²]docosane-18,22'-octacyclo[11.10.1.1¹,²¹.1³,¹⁰.0³,⁷.0¹⁴,¹⁹.0²⁰,²⁴.0¹³,²⁶]hexacosane]-2,4,6,9,14',16',18'-heptaene-10-carboxylate

methyl (1's,3's,12r,18s,21'r,22r,24'r,26'r)-18'-methoxy-6',15,25'-trioxa-8,10',19,20'-tetraazaspiro[hexacyclo[10.9.1.0¹,⁹.0²,⁷.0¹²,¹⁶.0¹⁹,²²]docosane-18,22'-octacyclo[11.10.1.1¹,²¹.1³,¹⁰.0³,⁷.0¹⁴,¹⁹.0²⁰,²⁴.0¹³,²⁶]hexacosane]-2,4,6,9,14',16',18'-heptaene-10-carboxylate

C43H48N4O6 (716.3574)


   

methyl (1s,2s,4r,6s,7r,8r,9r,10r,11s,12s,14r,15s,16r,18r)-9,12,18-tris(acetyloxy)-6-(furan-3-yl)-14-hydroxy-1,7,11,15-tetramethyl-8-{[(2r)-2-methylbutanoyl]oxy}-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-15-carboxylate

methyl (1s,2s,4r,6s,7r,8r,9r,10r,11s,12s,14r,15s,16r,18r)-9,12,18-tris(acetyloxy)-6-(furan-3-yl)-14-hydroxy-1,7,11,15-tetramethyl-8-{[(2r)-2-methylbutanoyl]oxy}-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-15-carboxylate

C38H52O13 (716.3408)


   

10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4s,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-[(4z)-hex-4-en-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4s,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-[(4z)-hex-4-en-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C41H52N2O9 (716.3673)


   

2',10'-bis(acetyloxy)-8',12',15',15'-tetramethyl-5'-{[3-(methylamino)-3-phenylpropanoyl]oxy}-13'-oxospiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-9'-yl pyridine-3-carboxylate

2',10'-bis(acetyloxy)-8',12',15',15'-tetramethyl-5'-{[3-(methylamino)-3-phenylpropanoyl]oxy}-13'-oxospiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-9'-yl pyridine-3-carboxylate

C40H48N2O10 (716.3309)


   

(3s,6r,9s,12s,15r,20as)-3,15-dibenzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20as)-3,15-dibenzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-6,12-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C40H56N6O6 (716.4261)