Exact Mass: 715.4788

Exact Mass Matches: 715.4788

Found 483 metabolites which its exact mass value is equals to given mass value 715.4788, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

BDE 175

1,2,3,5-Tetrabromo-4-(2,3,5-tribromophenoxy)-benzene

C12H3Br7O (715.4467)


   

2,2',3,4,4',5',6-Heptabromodiphenyl ether

1,2,3,5-Tetrabromo-4-(2,4,5-tribromophenoxy)-benzene

C12H3Br7O (715.4467)


2,2,3,4,4,5,6-Heptabromodiphenyl ether is classified as a Food Contaminant (code WG) in the DFC. Classified as a Food Contaminant (code WG) in the DFC D005411 - Flame Retardants

   

PE(16:0/18:2(9Z,12Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(16:0/18:2(9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:2(9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:1(9Z)/18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(16:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/18:1(9Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:1(9Z)/18:1(9Z)), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(14:0/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-(tetradecanoyloxy)propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(14:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:0/20:2(11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(14:1(9Z)/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(14:1(9Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/20:1(11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(16:1(9Z)/18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(16:1(9Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/18:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:1(9Z)/18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:1(9Z)/18:1(11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:1(11Z)/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(18:1(11Z)/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(11Z)/16:1(9Z)), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:1(9Z)/16:1(9Z))

(2-aminoethoxy)[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(18:1(9Z)/16:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/16:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:1(9Z)/16:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(18:1(9Z)/16:1(9Z)), in particular, consists of one 9Z-octadecenoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:2(9Z,12Z)/16:0)

(2-aminoethoxy)[(2R)-2-(hexadecanoyloxy)-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(18:2(9Z,12Z)/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:2(9Z,12Z)/16:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(20:1(11Z)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(20:1(11Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/14:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:1(11Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/14:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:2(11Z,14Z)/14:0)

(2-aminoethoxy)[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-(tetradecanoyloxy)propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(20:2(11Z,14Z)/14:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/14:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE-NMe(15:0/18:2(9Z,12Z))

[2-(methylamino)ethoxy]({2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe(15:0/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(15:0/18:2(9Z,12Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/15:0)

[2-(methylamino)ethoxy]({3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe(18:2(9Z,12Z)/15:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/15:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(14:1(9Z)/18:1(9Z))

[2-(dimethylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(14:1(9Z)/18:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(14:1(9Z)/18:1(9Z)), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(14:1(9Z)/18:1(11Z))

[2-(dimethylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(14:1(9Z)/18:1(11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(14:1(9Z)/18:1(11Z)), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one 11Z-octadecenoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(16:1(9Z)/16:1(9Z))

{2,3-bis[(9Z)-hexadec-9-enoyloxy]propoxy}[2-(dimethylamino)ethoxy]phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(16:1(9Z)/16:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(16:1(9Z)/16:1(9Z)), in particular, consists of two 9Z-hexadecenoyl chain at positions C-1 and C2. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe2(14:0/18:2(9Z,12Z))

[2-(dimethylamino)ethoxy]({2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-3-(tetradecanoyloxy)propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(14:0/18:2(9Z,12Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(14:0/18:2(9Z,12Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(11Z)/14:1(9Z))

[2-(dimethylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(18:1(11Z)/14:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(11Z)/14:1(9Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:1(9Z)/14:1(9Z))

[2-(dimethylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(18:1(9Z)/14:1(9Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:1(9Z)/14:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:2(9Z,12Z)/14:0)

[2-(dimethylamino)ethoxy]({3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]-2-(tetradecanoyloxy)propoxy})phosphinic acid

C39H74NO8P (715.5152)


PE-NMe2(18:2(9Z,12Z)/14:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:2(9Z,12Z)/14:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

(2E)-3-(3,5-Bis(tert-butyl)-4-hydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one

(2E)-3-(3,5-Bis(tert-butyl)-4-hydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one

C37H65NO12 (715.4507)


   

Anhydroerythromycin

11-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-5-ethyl-3-hydroxy-9-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-2,4,8,10,12,14-hexamethyl-6,15,16-trioxatricyclo[10.2.1.1^{1,4}]hexadecan-7-one

C37H65NO12 (715.4507)


   

Erythromycin A enol ether

11-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-5-ethyl-3,4-dihydroxy-9-[(5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl)oxy]-2,4,8,10,12,14-hexamethyl-6,15-dioxabicyclo[10.2.1]pentadec-1(14)-en-7-one

C37H65NO12 (715.4507)


   

PE(15:0/18:2(10E,12Z)+=O(9))

(2-aminoethoxy)[(2R)-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(15:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(10E,12Z)+=O(9)/15:0)

(2-aminoethoxy)[(2R)-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(18:2(10E,12Z)+=O(9)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(10E,12Z)+=O(9)/15:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/18:2(9Z,11E)+=O(13))

(2-aminoethoxy)[(2R)-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(15:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:2(9Z,11E)+=O(13)/15:0)

(2-aminoethoxy)[(2R)-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(18:2(9Z,11E)+=O(13)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:2(9Z,11E)+=O(13)/15:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/18:3(10,12,15)-OH(9))

(2-aminoethoxy)[(2R)-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(15:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(10,12,15)-OH(9)/15:0)

(2-aminoethoxy)[(2R)-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(18:3(10,12,15)-OH(9)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(10,12,15)-OH(9)/15:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(15:0/18:3(9,11,15)-OH(13))

(2-aminoethoxy)[(2R)-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(15:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(15:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:3(9,11,15)-OH(13)/15:0)

(2-aminoethoxy)[(2R)-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphinic acid

C38H70NO9P (715.4788)


PE(18:3(9,11,15)-OH(13)/15:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:3(9,11,15)-OH(13)/15:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(P-16:0/18:1(12Z)-O(9S,10R))

(2-aminoethoxy)[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(P-16:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-16:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-O(9S,10R)/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(18:1(12Z)-O(9S,10R)/P-16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-O(9S,10R)/P-16:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(P-16:0/18:1(9Z)-O(12,13))

(2-aminoethoxy)[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(P-16:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-16:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(9Z)-O(12,13)/P-16:0)

(2-aminoethoxy)[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C39H74NO8P (715.5152)


PE(18:1(9Z)-O(12,13)/P-16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(9Z)-O(12,13)/P-16:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

Nocardichelin B

Nocardichelin B

C38H61N5O8 (715.452)


   

Phosphatidylethanolamine 16:0-18:2

Phosphatidylethanolamine 16:0-18:2

C39H74NO8P (715.5152)


   

Phosphatidylethanolamine 16:1-18:1

Phosphatidylethanolamine 16:1-18:1

C39H74NO8P (715.5152)


   

PE(16:1e/13-HODE)

PE(16:1e/13-HODE)

C39H74NO8P (715.5152)


   

L-alpha-Phosphatidylethanolamine (Soy)

L-alpha-Phosphatidylethanolamine (Soy)

C39H74NO8P (715.5152)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Erythromycin A Enol Ether

Erythromycin A Enol Ether

C37H65NO12 (715.4507)


   

PE 34:2

9,12-Octadecadienoic acid (Z,Z)-, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, (R)-

C39H74NO8P (715.5152)


Found in mouse brain; TwoDicalId=387; MgfFile=160720_brain_DHA_14_Neg; MgfId=934 Found in mouse liver; TwoDicalId=32; MgfFile=160824_Liver_EPA_Neg_10; MgfId=688

   

Phosphatidylethanolamine (16:0/18:2) Abbr: PLPE

Phosphatidylethanolamine (16:0/18:2) Abbr: PLPE

C39H74NO8P (715.5152)


   

PE(16:0/18:2)

Ethanol, 2-amino-, dihydrogen phosphate (ester) monoester with 1-palmito-2-linolein, L-

C39H74NO8P (715.5152)


   

1-Palmitoyl-2-linoleoyl PE

(1R)-1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, 9Z,12Z-octadecadienoic acid

C39H74NO8P (715.5152)


   

PE(34:2)

1-Eicosadienoyl-2-myristoyl-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PC(13:0/18:2(9Z,12Z))

1-tridecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(14:0/17:2(9Z,12Z))

1-tetradecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(14:1(9Z)/17:1(9Z))

1-(9Z-tetradecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(15:1(9Z)/16:1(9Z))

1-(9Z-pentadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(16:1(9Z)/15:1(9Z))

1-(9Z-hexadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(17:1(9Z)/14:1(9Z))

1-(9Z-heptadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(17:2(9Z,12Z)/14:0)

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PC(18:2(9Z,12Z)/13:0)

1-(9Z,12Z-octadecadienoyl)-2-tridecanoyl-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PE(12:0/22:2(13Z,16Z))

1-dodecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(15:1(9Z)/19:1(9Z))

1-(9Z-pentadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(17:0/17:2(9Z,12Z))

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(17:2(9Z,12Z)/17:0)

1-(9Z,12Z-heptadecadienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(19:1(9Z)/15:1(9Z))

1-(9Z-nonadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(22:2(13Z,16Z)/12:0)

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PE(17:1(9Z)/17:1(9Z))

1,2-di-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

PS(13:0/18:3(6Z,9Z,12Z))

1-tridecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PS(13:0/18:3(9Z,12Z,15Z))

1-tridecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PS(14:1(9Z)/17:2(9Z,12Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PS(17:2(9Z,12Z)/14:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PS(18:3(6Z,9Z,12Z)/13:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PS(18:3(9Z,12Z,15Z)/13:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-tridecanoyl-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

PC 31:2

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

PS 31:3

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphoserine

C37H66NO10P (715.4424)


   

2,3,3,4,4,5,6-heptabromodiphenyl ether

2,3,3,4,4,5,6-heptabromodiphenyl ether

C12H3Br7O (715.4467)


   

Phosphoric acid, magnesium strontium salt, tin-doped

Phosphoric acid, magnesium strontium salt, tin-doped

Mg3O16P4Sr3 (715.4857)


   

diphenyl ether, heptabromo derivative

diphenyl ether, heptabromo derivative

C12H3Br7O (715.4467)


   

Phosphatidylethanolamines (soy)

1-16:0-2-18:2-Phosphatidylethanolamine

C39H74NO8P (715.5152)


   

BDE No 181 solution

BDE No 181 solution

C12H3Br7O (715.4467)


   

2,2,3,4,4,6,6-HEPTABROMODIPHENYL ETHER

2,2,3,4,4,6,6-HEPTABROMODIPHENYL ETHER

C12H3Br7O (715.4467)


   

2-Linoleoyl-1-palmitoyl-sn-glycero-3-phosphoethanolamine

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

C39H74NO8P (715.5152)


   

Phosphatidylethanolamine (1-cis-vaccenoyl, 2-palmitoleoyl)

Phosphatidylethanolamine (1-cis-vaccenoyl, 2-palmitoleoyl)

C39H74NO8P (715.5152)


   

cyclopropane phosphatidylethanolamine (dihexadec-9,10-cyclo-anoyl, n-C16:0 cyclo)

cyclopropane phosphatidylethanolamine (dihexadec-9,10-cyclo-anoyl, n-C16:0 cyclo)

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] 8-(2-hexylcyclopropyl)octanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] 8-(2-hexylcyclopropyl)octanoate

C39H74NO8P (715.5152)


   

PE(P-16:0/18:1(12Z)-O(9S,10R))

PE(P-16:0/18:1(12Z)-O(9S,10R))

C39H74NO8P (715.5152)


   

PE(18:1(12Z)-O(9S,10R)/P-16:0)

PE(18:1(12Z)-O(9S,10R)/P-16:0)

C39H74NO8P (715.5152)


   

PE(15:0/18:2(10E,12Z)+=O(9))

PE(15:0/18:2(10E,12Z)+=O(9))

C38H70NO9P (715.4788)


   

PE(18:2(10E,12Z)+=O(9)/15:0)

PE(18:2(10E,12Z)+=O(9)/15:0)

C38H70NO9P (715.4788)


   

PE(15:0/18:2(9Z,11E)+=O(13))

PE(15:0/18:2(9Z,11E)+=O(13))

C38H70NO9P (715.4788)


   

PE(18:2(9Z,11E)+=O(13)/15:0)

PE(18:2(9Z,11E)+=O(13)/15:0)

C38H70NO9P (715.4788)


   

PE(P-16:0/18:1(9Z)-O(12,13))

PE(P-16:0/18:1(9Z)-O(12,13))

C39H74NO8P (715.5152)


   

PE(18:1(9Z)-O(12,13)/P-16:0)

PE(18:1(9Z)-O(12,13)/P-16:0)

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C38H70NO9P (715.4788)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoate

C38H70NO9P (715.4788)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C38H70NO9P (715.4788)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] (9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoate

C38H70NO9P (715.4788)


   

2-azaniumylethyl (2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propyl phosphate

2-azaniumylethyl (2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propyl phosphate

C39H74NO8P (715.5152)


   

Azaspiracid-33

Azaspiracid-33

C41H65NO9 (715.4659)


   

HexCer 8:1;2O/28:6

HexCer 8:1;2O/28:6

C42H69NO8 (715.5023)


   

HexCer 8:0;2O/28:7

HexCer 8:0;2O/28:7

C42H69NO8 (715.5023)


   

NAGly 26:7/18:3

NAGly 26:7/18:3

C46H69NO5 (715.5175)


   

NAGly 22:6/22:4

NAGly 22:6/22:4

C46H69NO5 (715.5175)


   

NAGly 24:6/20:4

NAGly 24:6/20:4

C46H69NO5 (715.5175)


   

NAGly 22:5/22:5

NAGly 22:5/22:5

C46H69NO5 (715.5175)


   

HexCer 10:1;2O/26:6

HexCer 10:1;2O/26:6

C42H69NO8 (715.5023)


   

HexCer 10:0;2O/26:7

HexCer 10:0;2O/26:7

C42H69NO8 (715.5023)


   

HexCer 14:1;2O/22:6

HexCer 14:1;2O/22:6

C42H69NO8 (715.5023)


   

HexCer 18:2;2O/18:5

HexCer 18:2;2O/18:5

C42H69NO8 (715.5023)


   

HexCer 12:2;2O/24:5

HexCer 12:2;2O/24:5

C42H69NO8 (715.5023)


   

HexCer 14:2;2O/22:5

HexCer 14:2;2O/22:5

C42H69NO8 (715.5023)


   

HexCer 14:3;2O/22:4

HexCer 14:3;2O/22:4

C42H69NO8 (715.5023)


   

HexCer 16:3;2O/20:4

HexCer 16:3;2O/20:4

C42H69NO8 (715.5023)


   

HexCer 18:3;2O/18:4

HexCer 18:3;2O/18:4

C42H69NO8 (715.5023)


   

HexCer 12:1;2O/24:6

HexCer 12:1;2O/24:6

C42H69NO8 (715.5023)


   

HexCer 20:3;2O/16:4

HexCer 20:3;2O/16:4

C42H69NO8 (715.5023)


   

HexCer 16:2;2O/20:5

HexCer 16:2;2O/20:5

C42H69NO8 (715.5023)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-9,12,15,18,21,24,27,30,33-nonaenoate

C41H66NO7P (715.4577)


   

Lnape 26:2/N-8:0

Lnape 26:2/N-8:0

C39H74NO8P (715.5152)


   

Lnape 8:0/N-26:2

Lnape 8:0/N-26:2

C39H74NO8P (715.5152)


   
   
   
   
   
   
   

2-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-octanoyloxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C42H69NO8 (715.5023)


   

Lnaps 11:0/N-20:3

Lnaps 11:0/N-20:3

C37H66NO10P (715.4424)


   

Lnaps 15:1/N-16:2

Lnaps 15:1/N-16:2

C37H66NO10P (715.4424)


   

Lnaps 15:0/N-16:3

Lnaps 15:0/N-16:3

C37H66NO10P (715.4424)


   

Lnape 21:1/N-13:1

Lnape 21:1/N-13:1

C39H74NO8P (715.5152)


   

Lnape 13:1/N-21:1

Lnape 13:1/N-21:1

C39H74NO8P (715.5152)


   

Lnaps 17:2/N-14:1

Lnaps 17:2/N-14:1

C37H66NO10P (715.4424)


   

Lnape 17:0/N-17:2

Lnape 17:0/N-17:2

C39H74NO8P (715.5152)


   

Lnape 18:0/N-16:2

Lnape 18:0/N-16:2

C39H74NO8P (715.5152)


   

Lnape 19:2/N-15:0

Lnape 19:2/N-15:0

C39H74NO8P (715.5152)


   

Lnape 17:2/N-17:0

Lnape 17:2/N-17:0

C39H74NO8P (715.5152)


   

Lnaps 13:0/N-18:3

Lnaps 13:0/N-18:3

C37H66NO10P (715.4424)


   

Lnaps 18:2/N-13:1

Lnaps 18:2/N-13:1

C37H66NO10P (715.4424)


   

Lnape 24:2/N-10:0

Lnape 24:2/N-10:0

C39H74NO8P (715.5152)


   

Lnaps 13:1/N-18:2

Lnaps 13:1/N-18:2

C37H66NO10P (715.4424)


   

Lnaps 14:1/N-17:2

Lnaps 14:1/N-17:2

C37H66NO10P (715.4424)


   

Lnape 22:2/N-12:0

Lnape 22:2/N-12:0

C39H74NO8P (715.5152)


   

Lnape 15:0/N-19:2

Lnape 15:0/N-19:2

C39H74NO8P (715.5152)


   

Lnape 19:1/N-15:1

Lnape 19:1/N-15:1

C39H74NO8P (715.5152)


   

Lnape 16:2/N-18:0

Lnape 16:2/N-18:0

C39H74NO8P (715.5152)


   

Lnape 20:2/N-14:0

Lnape 20:2/N-14:0

C39H74NO8P (715.5152)


   

Lnape 20:1/N-14:1

Lnape 20:1/N-14:1

C39H74NO8P (715.5152)


   

Lnape 18:1/N-16:1

Lnape 18:1/N-16:1

C39H74NO8P (715.5152)


   

Lnape 16:0/N-18:2

Lnape 16:0/N-18:2

C39H74NO8P (715.5152)


   

Lnape 13:0/N-21:2

Lnape 13:0/N-21:2

C39H74NO8P (715.5152)


   

Lnape 14:1/N-20:1

Lnape 14:1/N-20:1

C39H74NO8P (715.5152)


   

Lnape 21:2/N-13:0

Lnape 21:2/N-13:0

C39H74NO8P (715.5152)


   

Lnaps 16:3/N-15:0

Lnaps 16:3/N-15:0

C37H66NO10P (715.4424)


   

Lnape 15:1/N-19:1

Lnape 15:1/N-19:1

C39H74NO8P (715.5152)


   

Lnape 10:0/N-24:2

Lnape 10:0/N-24:2

C39H74NO8P (715.5152)


   

Lnape 14:0/N-20:2

Lnape 14:0/N-20:2

C39H74NO8P (715.5152)


   

Lnape 16:1/N-18:1

Lnape 16:1/N-18:1

C39H74NO8P (715.5152)


   

Lnape 12:0/N-22:2

Lnape 12:0/N-22:2

C39H74NO8P (715.5152)


   

Lnape 18:2/N-16:0

Lnape 18:2/N-16:0

C39H74NO8P (715.5152)


   

Lnaps 16:2/N-15:1

Lnaps 16:2/N-15:1

C37H66NO10P (715.4424)


   

Lnape 17:1/N-17:1

Lnape 17:1/N-17:1

C39H74NO8P (715.5152)


   

Lnaps 18:3/N-13:0

Lnaps 18:3/N-13:0

C37H66NO10P (715.4424)


   

Lnaps 20:3/N-11:0

Lnaps 20:3/N-11:0

C37H66NO10P (715.4424)


   

2-[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C42H69NO8 (715.5023)


   

2-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C42H69NO8 (715.5023)


   

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C42H69NO8 (715.5023)


   

2-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C42H69NO8 (715.5023)


   

HexCer 9:0;3O/24:2;(2OH)

HexCer 9:0;3O/24:2;(2OH)

C39H73NO10 (715.5234)


   

HexCer 11:0;3O/22:2;(2OH)

HexCer 11:0;3O/22:2;(2OH)

C39H73NO10 (715.5234)


   

HexCer 13:0;3O/20:2;(2OH)

HexCer 13:0;3O/20:2;(2OH)

C39H73NO10 (715.5234)


   

HexCer 13:1;3O/20:1;(2OH)

HexCer 13:1;3O/20:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 12:1;3O/21:1;(2OH)

HexCer 12:1;3O/21:1;(2OH)

C39H73NO10 (715.5234)


   

(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tricosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tricosa-4,8-diene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]nonadec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]nonadec-4-ene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]nonadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]nonadeca-4,8,12-triene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid

C43H73NO5S (715.5209)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H66NO7P (715.4577)


   

(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhenicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxyhenicosa-4,8,12-triene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhenicosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyhenicosa-4,8-diene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyheptadeca-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyheptadeca-4,8-diene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyheptadec-4-ene-1-sulfonic acid

(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyheptadec-4-ene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhenicos-4-ene-1-sulfonic acid

(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyhenicos-4-ene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyheptadeca-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyheptadeca-4,8,12-triene-1-sulfonic acid

C43H73NO5S (715.5209)


   

2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyheptadecane-1-sulfonic acid

2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyheptadecane-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentacosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentacosa-4,8-diene-1-sulfonic acid

C43H73NO5S (715.5209)


   

(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonadeca-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]nonadeca-4,8-diene-1-sulfonic acid

C43H73NO5S (715.5209)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-hexadecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-hexadecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[3-decoxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decoxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[3-dodecoxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecoxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-decanoyloxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-decanoyloxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[2-dodecanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-dodecanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H70NO9P (715.4788)


   

2-[4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C42H69NO6S (715.4845)


   
   

(7Z,19R,22R)-25-amino-22-hydroxy-16,22-dioxo-17,21,23-trioxa-22lambda~5~-phosphapentacos-7-en-19-yl (9Z)-octadec-9-enoate

(7Z,19R,22R)-25-amino-22-hydroxy-16,22-dioxo-17,21,23-trioxa-22lambda~5~-phosphapentacos-7-en-19-yl (9Z)-octadec-9-enoate

C39H74NO8P (715.5152)


   

HexCer 18:2;3O/15:0;(2OH)

HexCer 18:2;3O/15:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 18:1;3O/15:1;(2OH)

HexCer 18:1;3O/15:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 14:2;3O/19:0;(2OH)

HexCer 14:2;3O/19:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 14:1;3O/19:1;(2OH)

HexCer 14:1;3O/19:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 15:2;3O/18:0;(2OH)

HexCer 15:2;3O/18:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 21:2;3O/12:0;(2OH)

HexCer 21:2;3O/12:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 19:1;3O/14:1;(2OH)

HexCer 19:1;3O/14:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 17:0;3O/16:2;(2OH)

HexCer 17:0;3O/16:2;(2OH)

C39H73NO10 (715.5234)


   

HexCer 17:1;3O/16:1;(2OH)

HexCer 17:1;3O/16:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 20:2;3O/13:0;(2OH)

HexCer 20:2;3O/13:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 15:1;3O/18:1;(2OH)

HexCer 15:1;3O/18:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 15:0;3O/18:2;(2OH)

HexCer 15:0;3O/18:2;(2OH)

C39H73NO10 (715.5234)


   

HexCer 21:1;3O/12:1;(2OH)

HexCer 21:1;3O/12:1;(2OH)

C39H73NO10 (715.5234)


   

HexCer 19:2;3O/14:0;(2OH)

HexCer 19:2;3O/14:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 16:2;3O/17:0;(2OH)

HexCer 16:2;3O/17:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 17:2;3O/16:0;(2OH)

HexCer 17:2;3O/16:0;(2OH)

C39H73NO10 (715.5234)


   

HexCer 20:1;3O/13:1;(2OH)

HexCer 20:1;3O/13:1;(2OH)

C39H73NO10 (715.5234)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C41H66NO7P (715.4577)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C41H66NO7P (715.4577)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C41H66NO7P (715.4577)


   

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] octadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] octadecanoate

C39H74NO8P (715.5152)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

C39H74NO8P (715.5152)


   

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C39H74NO8P (715.5152)


   

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] (Z)-heptadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(Z)-heptadec-9-enoyl]oxypropyl] (Z)-heptadec-9-enoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H74NO8P (715.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] heptadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] heptadecanoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C39H74NO8P (715.5152)


   

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] heptadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] heptadecanoate

C39H74NO8P (715.5152)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C39H74NO8P (715.5152)


   

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[3-dodecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecanoyloxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[3-decanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxy-3-pentanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[3-heptanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptanoyloxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-octadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

2-[(1-O-Palmitoyl-2-O-linoleoyl-L-glycero-3-phospho)oxy]ethanamine

2-[(1-O-Palmitoyl-2-O-linoleoyl-L-glycero-3-phospho)oxy]ethanamine

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-11-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-4-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-4-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] octadec-17-enoate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2S)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] octadec-17-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] octadec-17-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-7-enoate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-13-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-9-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-13-enoate

C39H74NO8P (715.5152)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-4-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-6-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-6-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-6-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-4-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-4-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-4-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] octadec-17-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] octadec-17-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-7-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-11-enoate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-13-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-9-enoate

C39H74NO8P (715.5152)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] octadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] octadecanoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (E)-heptadec-9-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-13-enoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-13-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H74NO8P (715.5152)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C39H74NO8P (715.5152)


   

[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-13-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate

C39H74NO8P (715.5152)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-7-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-7-enoate

C39H74NO8P (715.5152)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(9E,12E)-octadeca-9,12-dienoyl]oxy-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-9-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (E)-octadec-9-enoate

C39H74NO8P (715.5152)


   

[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] heptadecanoate

C39H74NO8P (715.5152)


   

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2R)-2-amino-3-[hydroxy-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C37H66NO10P (715.4424)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] octadec-17-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] octadec-17-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C39H74NO8P (715.5152)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-13-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (E)-octadec-11-enoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-6-enoate

C39H74NO8P (715.5152)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (E)-octadec-7-enoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hexadecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

C39H74NO8P (715.5152)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C39H74NO8P (715.5152)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-6-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (E)-octadec-6-enoate

C39H74NO8P (715.5152)


   

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H68N2O6P+ (715.4815)


   

2,2,3,4,4,5,6-heptabromodiphenyl ether

1,2,3,5-Tetrabromo-4-(2,4,5-tribromophenoxy)benzene

C12H3Br7O (715.4467)


D005411 - Flame Retardants

   

2,2,3,3,4,5,6-Heptabromodiphenyl ether

2,2,3,3,4,5,6-Heptabromodiphenyl ether

C12H3Br7O (715.4467)


   

1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine

1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 9Z,12Z-octadecadienoyl (linoleoyl) respectively.

   

1-Vaccenoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine

1-Vaccenoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z,12Z-octadecadienoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

1-(9Z,12Z-octadecadienoyl)-2-hexadecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-tetradecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

1-tetradecanoyl-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(11Z-eicosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

1-(11Z-eicosenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-octadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

1-(9Z-octadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-tetradecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

1-(9Z-tetradecenoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(11Z,14Z-eicosadienoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

1-(11Z,14Z-eicosadienoyl)-2-tetradecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-Palmitoleoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

1-Palmitoleoyl-2-vaccenoyl-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-hexadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

1-(9Z-hexadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-dodecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoethanolamine

1-dodecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-tetradecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

1-tetradecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z-heptadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

1-(9Z-heptadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z,12Z-octadecadienoyl)-2-tridecanoyl-glycero-3-phosphocholine

1-(9Z,12Z-octadecadienoyl)-2-tridecanoyl-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-tridecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine

1-tridecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z-tetradecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

1-(9Z-tetradecenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z-pentadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine

1-(9Z-pentadecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

1-(9Z,12Z-heptadecadienoyl)-2-tetradecanoyl-glycero-3-phosphocholine

C39H74NO8P (715.5152)


   

1-(9Z,12Z-heptadecadienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

1-(9Z,12Z-heptadecadienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1,2-di-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

1,2-di-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-pentadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

1-(9Z-pentadecenoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(9Z-nonadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

1-(9Z-nonadecenoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phosphoethanolamine

1-(13Z,16Z-docosadienoyl)-2-dodecanoyl-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


   

phosphatidylethanolamine (16:1/18:1)

phosphatidylethanolamine (16:1/18:1)

C39H74NO8P (715.5152)


A phosphatidylethanolamine in which one acyl group has 16 carbons and 1 double bond while the other has 18 carbons and 1 double bond.

   

phosphatidylethanolamine (16:0/18:2)

phosphatidylethanolamine (16:0/18:2)

C39H74NO8P (715.5152)


1,2-diacyl-sn-glycero-3-phosphoethanolamine in which the acyl group at C-1 contains 16 carbons and no double bonds while that at C-2 contains 18 carbons and 2 double bonds.

   

phosphatidylethanolamine 34:2 zwitterion

phosphatidylethanolamine 34:2 zwitterion

C39H74NO8P (715.5152)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 34 carbons in total with 2 double bonds.

   

1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine zwitterion

1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine zwitterion

C39H74NO8P (715.5152)


A phosphatidylethanolamine 34:2 zwitterion obtained by transfer of a proton from the phosphate to the amino group of 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoethanolamine.

   

1-Oleoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine

1-Oleoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine

C39H74NO8P (715.5152)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine in which the 1- and 2-acyl groups are specified as oleoyl and palmitoleoyl respectively.

   

1-oleoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

1-oleoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine zwitterion

C39H74NO8P (715.5152)


A phosphatidylethanolamine 34:2 zwitterion obtained by transfer of a proton from the amino to the phosphate group of 1-oleoyl-2-palmitoleoyl-sn-glycero-3-phosphoethanolamine; major species at pH 7.3.

   

MePC(30:2)

MePC(12:0_18:2)

C39H74NO8P (715.5152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(32:2)

dMePE(14:0_18:2)

C39H74NO8P (715.5152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePE(32:2)

BisMePE(16:1_16:1)

C39H74NO8P (715.5152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Heptabromodiphenyl ether

Heptabromodiphenyl ether

C12H3Br7O (715.4467)


   
   
   
   
   
   
   

PC O-18:0/13:3;O

PC O-18:0/13:3;O

C39H74NO8P (715.5152)


   
   
   
   

PC P-18:0/12:3;O2

PC P-18:0/12:3;O2

C38H70NO9P (715.4788)


   

PC P-18:1/11:3;O3

PC P-18:1/11:3;O3

C37H66NO10P (715.4424)


   

PC P-18:1/12:2;O2

PC P-18:1/12:2;O2

C38H70NO9P (715.4788)


   

PC P-20:0/11:2;O

PC P-20:0/11:2;O

C39H74NO8P (715.5152)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE O-16:0/18:3;O

PE O-16:0/18:3;O

C39H74NO8P (715.5152)


   

PE O-20:0/13:4;O2

PE O-20:0/13:4;O2

C38H70NO9P (715.4788)


   
   
   
   
   

PE P-16:0/18:2;O

PE P-16:0/18:2;O

C39H74NO8P (715.5152)


   

PE P-16:1/18:1;O

PE P-16:1/18:1;O

C39H74NO8P (715.5152)


   

PE P-20:0/13:3;O2

PE P-20:0/13:3;O2

C38H70NO9P (715.4788)


   

PE P-20:1/12:3;O3

PE P-20:1/12:3;O3

C37H66NO10P (715.4424)


   
   

PE P-36:8 or PE O-36:9

PE P-36:8 or PE O-36:9

C41H66NO7P (715.4577)


   
   
   
   
   
   
   
   
   
   
   
   
   

PE 16:0_18:2(9Z,12Z)

PE 16:0_18:2(9Z,12Z)

C39H74NO8P (715.5152)


   
   
   
   
   
   

PE-NMe 15:0_18:2

PE-NMe 15:0_18:2

C39H74NO8P (715.5152)


   

PE-NMe2 14:0_18:2

PE-NMe2 14:0_18:2

C39H74NO8P (715.5152)


   
   
   
   
   
   
   
   
   

PS P-14:0/18:2 or PS O-14:1/18:2

PS P-14:0/18:2 or PS O-14:1/18:2

C38H70NO9P (715.4788)


   
   

PS P-16:1/16:1 or PS O-16:2/16:1

PS P-16:1/16:1 or PS O-16:2/16:1

C38H70NO9P (715.4788)


   
   
   

PS P-18:1/14:1 or PS O-18:2/14:1

PS P-18:1/14:1 or PS O-18:2/14:1

C38H70NO9P (715.4788)


   
   
   

PS P-32:2 or PS O-32:3

PS P-32:2 or PS O-32:3

C38H70NO9P (715.4788)


   
   
   
   

CerP 20:2;O2/22:6

CerP 20:2;O2/22:6

C42H70NO6P (715.494)


   
   

GalCer 14:1;O2/22:6

GalCer 14:1;O2/22:6

C42H69NO8 (715.5023)


   

GalCer 14:2;O2/22:5

GalCer 14:2;O2/22:5

C42H69NO8 (715.5023)


   

GalCer 16:2;O2/20:5

GalCer 16:2;O2/20:5

C42H69NO8 (715.5023)


   

GalCer 36:7;O2

GalCer 36:7;O2

C42H69NO8 (715.5023)


   

GlcCer 14:1;O2/22:6

GlcCer 14:1;O2/22:6

C42H69NO8 (715.5023)


   

GlcCer 14:2;O2/22:5

GlcCer 14:2;O2/22:5

C42H69NO8 (715.5023)


   

GlcCer 16:2;O2/20:5

GlcCer 16:2;O2/20:5

C42H69NO8 (715.5023)


   

GlcCer 36:7;O2

GlcCer 36:7;O2

C42H69NO8 (715.5023)


   

HexCer 14:1;O2/22:6

HexCer 14:1;O2/22:6

C42H69NO8 (715.5023)


   

HexCer 14:2;O2/22:5

HexCer 14:2;O2/22:5

C42H69NO8 (715.5023)


   

HexCer 16:2;O2/20:5

HexCer 16:2;O2/20:5

C42H69NO8 (715.5023)


   
   

HexCer 36:7;O2

HexCer 36:7;O2

C42H69NO8 (715.5023)


   

ST 29:0;O7;HexNAc

ST 29:0;O7;HexNAc

C37H65NO12 (715.4507)


   
   
   

PE(16:0/18:2(9Z,12Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C39H74NO8P (715.5152)


PANOMIX lipidsearch standard reference 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine (1-Palmitoyl-2-linoleoyl-GPE) is a type of glycerophospholipid (GPL) that plays several important roles in biological systems. Its primary functions include: Cell Membrane Structure: As a phospholipid, 1-Palmitoyl-2-linoleoyl-GPE is a key component of cell membranes. It helps maintain the structural integrity and fluidity of the membrane, which is crucial for various cellular processes. Signal Transduction: Glycerophospholipids like 1-Palmitoyl-2-linoleoyl-GPE are involved in cell signaling pathways. They can be metabolized to produce second messengers that regulate cellular responses to external stimuli. Cell Adhesion and Migration: These lipids can influence cell adhesion and migration, which are important processes in development, wound healing, and immune response. Biosynthesis of Other Lipids: 1-Palmitoyl-2-linoleoyl-GPE serves as a precursor for the synthesis of other bioactive lipids, such as eicosanoids, which are involved in inflammation and other physiological processes. Modulation of Membrane Permeability: The presence of specific fatty acids like palmitic and linoleic acid in this phospholipid can affect the permeability of the cell membrane to ions and molecules. Potential Role in Disease: Altered levels or metabolism of glycerophospholipids, including 1-Palmitoyl-2-linoleoyl-GPE, have been associated with various diseases, such as cancer, diabetes, and neurological disorders. 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=26662-95-3 (retrieved 2024-07-01) (CAS RN: 26662-95-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(3r,3as,4r,6r,6as,10r,12r,13r,15ar)-3-benzyl-1,6,12-trihydroxy-4,10,12-trimethyl-5-methylidene-15-oxo-3h,3ah,4h,6h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindol-13-yl (6e,8e)-4-methylhexadeca-6,8-dienoate

(3r,3as,4r,6r,6as,10r,12r,13r,15ar)-3-benzyl-1,6,12-trihydroxy-4,10,12-trimethyl-5-methylidene-15-oxo-3h,3ah,4h,6h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindol-13-yl (6e,8e)-4-methylhexadeca-6,8-dienoate

C45H65NO6 (715.4812)


   

3-{hydroxy[5-({hydroxy[(4s)-2-(2-hydroxyphenyl)-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)pentyl]carbamoyl}-n-{5-[(2z)-n-hydroxytetradec-2-enamido]pentyl}propanimidic acid

3-{hydroxy[5-({hydroxy[(4s)-2-(2-hydroxyphenyl)-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)pentyl]carbamoyl}-n-{5-[(2z)-n-hydroxytetradec-2-enamido]pentyl}propanimidic acid

C38H61N5O8 (715.452)


   

3-benzyl-1,6,12-trihydroxy-4,10,12-trimethyl-5-methylidene-15-oxo-3h,3ah,4h,6h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindol-13-yl 4-methylhexadeca-6,8-dienoate

3-benzyl-1,6,12-trihydroxy-4,10,12-trimethyl-5-methylidene-15-oxo-3h,3ah,4h,6h,6ah,9h,10h,11h,13h,14h-cycloundeca[d]isoindol-13-yl 4-methylhexadeca-6,8-dienoate

C45H65NO6 (715.4812)


   

3-{hydroxy[5-({hydroxy[2-(2-hydroxyphenyl)-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)pentyl]carbamoyl}-n-[5-(n-hydroxytetradec-2-enamido)pentyl]propanimidic acid

3-{hydroxy[5-({hydroxy[2-(2-hydroxyphenyl)-4,5-dihydro-1,3-oxazol-4-yl]methylidene}amino)pentyl]carbamoyl}-n-[5-(n-hydroxytetradec-2-enamido)pentyl]propanimidic acid

C38H61N5O8 (715.452)


   

2-aminoethoxy(3-(hexadecanoyloxy)-2-(octadeca-9,12-dienoyloxy)propoxy)phosphinic acid

2-aminoethoxy(3-(hexadecanoyloxy)-2-(octadeca-9,12-dienoyloxy)propoxy)phosphinic acid

C39H74NO8P (715.5152)