Exact Mass: 714.522297
Exact Mass Matches: 714.522297
Found 500 metabolites which its exact mass value is equals to given mass value 714.522297
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
(2S)-Deoxymyxol 2-alpha-L-fucoside
DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:5n6/0:0/22:6n3)
DG(22:5n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/22:6n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(22:5n3/0:0/22:6n3)
DG(22:5n3/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n3/0:0/22:6n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The docosapentaenoic acid moiety is derived from fish oils, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
PA(15:0/22:2(13Z,16Z))
PA(15:0/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/22:2(13Z,16Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:2(13Z,16Z)/15:0)
PA(22:2(13Z,16Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/15:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(11D3/11M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D3/11M5/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11D5/11M3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D5/11M3/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11D5/9M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D5/9M5/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M3/11D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M3/11D5/0:0), in particular, consists of one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M5/11D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M5/11D3/0:0), in particular, consists of one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(11M5/9D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M5/9D5/0:0), in particular, consists of one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(13M5/9D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(13M5/9D3/0:0), in particular, consists of one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D3/13M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D3/13M5/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 13-(3-methyl-5-pentylfuran-2-yl)tridecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D5/11M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D5/11M5/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3-methyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9M5/11D5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9M5/11D5/0:0), in particular, consists of one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
PA(16:0/20:3(6,8,11)-OH(5))
PA(16:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(6,8,11)-OH(5)/16:0)
PA(20:3(6,8,11)-OH(5)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/16:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:0/18:2(10E,12Z)+=O(9))
PA(18:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(10E,12Z)+=O(9)/18:0)
PA(18:2(10E,12Z)+=O(9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/18:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:0/18:2(9Z,11E)+=O(13))
PA(18:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,11E)+=O(13)/18:0)
PA(18:2(9Z,11E)+=O(13)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/18:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:0/18:3(10,12,15)-OH(9))
PA(18:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:3(10,12,15)-OH(9)/18:0)
PA(18:3(10,12,15)-OH(9)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/18:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:0/18:3(9,11,15)-OH(13))
PA(18:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one octadecanoyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:3(9,11,15)-OH(13)/18:0)
PA(18:3(9,11,15)-OH(13)/18:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(9,11,15)-OH(13)/18:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of octadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(11Z)/18:1(12Z)-O(9S,10R))
PA(18:1(11Z)/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(11Z)/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 11Z-octadecenoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
SM(d16:1/18:1(12Z)-O(9S,10R))
C39H75N2O7P (714.5311610000001)
SM(d16:1/18:1(12Z)-O(9S,10R)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/18:1(12Z)-O(9S,10R)) consists of a sphingosine backbone and a 9,10-epoxy-octadecenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
SM(d16:1/18:1(9Z)-O(12,13))
C39H75N2O7P (714.5311610000001)
SM(d16:1/18:1(9Z)-O(12,13)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:1/18:1(9Z)-O(12,13)) consists of a sphingosine backbone and a 12,13-epoxy-octadecenoyl chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.
DG(19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/19:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/19:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/19:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/19:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(i-19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-19:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(i-19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-19:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(i-19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-19:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(i-19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-19:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
3,4-Didehydro-1-(beta-D-glucopyranosyloxy)-1,2-dihydro-psi,psi-carotene
(22R,32R,33R,34R)-bacteriohopane-32,33,34,35-tetrol tetraacetate
(3E,8Z)-8-carboxy-1-(O-beta-D-glucopyranosyl)-2,6-dihydroxytritriaconta-3,8-diene|calodendroside B
1-tetradecanyl-2-(8-[3]-ladderane-octanyl)-sn-glycero-3-phospho-(1-sn-glycerol)
DG(22:5/22:6/0:0)[iso2]
DG 44:11
2,3-bis-O-(geranylgeranyl)-sn-glycerol 1-phosphate(2-)
[(2S)-3-hydroxy-2-[9-(3-methyl-5-pentylfuran-2-yl)nonanoyloxy]propyl] 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoate
[(2S)-2-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
[(2S)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 13-(3-methyl-5-pentylfuran-2-yl)tridecanoate
[(2S)-1-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 13-(3-methyl-5-pentylfuran-2-yl)tridecanoate
[(2S)-1-[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
[(2S)-1-hydroxy-3-[9-(3-methyl-5-pentylfuran-2-yl)nonanoyloxy]propan-2-yl] 11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoate
[(2S)-1-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-hydroxypropan-2-yl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
[(2S)-1-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-hydroxypropan-2-yl] 11-(3-methyl-5-propylfuran-2-yl)undecanoate
[(2S)-2-[11-(3,4-dimethyl-5-pentylfuran-2-yl)undecanoyloxy]-3-hydroxypropyl] 11-(3-methyl-5-propylfuran-2-yl)undecanoate
[(2S)-2-[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyloxy]-3-hydroxypropyl] 11-(3-methyl-5-pentylfuran-2-yl)undecanoate
DG(19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/19:0/0:0)
DG(19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/19:0)
DG(19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/19:0/0:0)
DG(19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/19:0)
DG(i-19:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-19:0/0:0)
DG(i-19:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-19:0)
DG(i-19:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-19:0/0:0)
DG(i-19:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-19:0)
2-[hydroxy-[2-[(1Z,11Z)-octadeca-1,11-dienoxy]-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(1Z,9Z)-octadeca-1,9-dienoxy]-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-3-[(1Z,11Z)-octadeca-1,11-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(1Z,9Z)-octadeca-1,9-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
1-Oleoyl-2-nonadecanoyl-sn-glycero-3-phosphate(2-)
2,3-bis-O-(geranylgeranyl)glycerol 1-phosphate(2-)
2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[hydroxy-[(2R)-2-[(1Z,9Z)-octadeca-1,9-dienoxy]-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(2R)-2-[(1Z,11Z)-octadeca-1,11-dienoxy]-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate
[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadecanoate
[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-icos-11-enoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[1-pentadecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate
6-[3-[(Z)-heptadec-9-enoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[3-[(Z)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-[2-heptadecanoyloxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[2-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate
[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate
6-[2-hexadecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate
6-[2-dodecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
3,4,5-trihydroxy-6-[2-pentadecanoyloxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid
(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] henicosanoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate
[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] nonadecanoate
(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-henicos-11-enoate
(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate
[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-icos-11-enoate
[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] icosanoate
[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-nonadec-9-enoate
[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate
2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate
[(E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3,4-dihydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H75N2O7P (714.5311610000001)
[(8E,12E,16E)-2-(hexadecanoylamino)-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H75N2O7P (714.5311610000001)
[2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3,4-dihydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H75N2O7P (714.5311610000001)
[(8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C39H75N2O7P (714.5311610000001)
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
[(2S)-1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] heptadecanoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-13-enoate
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] octadec-17-enoate
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-icos-13-enoate
[1-carboxy-3-[2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-9-enoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] octadec-17-enoate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
2-[[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-6-enoate
[1-carboxy-3-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-4-enoate
[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-7-enoate
2-[hydroxy-[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-13-enoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-11-enoate
[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
2-[hydroxy-[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-11-enoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-6-enoate
[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (5E,9E)-hexacosa-5,9-dienoate
[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[1-carboxy-3-[2-decanoyloxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2S)-1-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-hydroxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] heptadecanoate
[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-7-enoate
[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] henicosanoate
[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[1-carboxy-3-[2-[(E)-heptadec-7-enoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-hexadec-9-enoate
2-[[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2R)-1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-hexadec-7-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[1-carboxy-3-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-11-enoate
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-13-enoate
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-icos-11-enoate
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(11E,14E,17E,20E)-tricosa-11,14,17,20-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-tetradecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate
[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-tridecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-octadec-7-enoate
[1-carboxy-3-[2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-4-enoate
[1-carboxy-3-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(E)-heptadec-7-enoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-octadec-9-enoate
[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
2-[hydroxy-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] icosanoate
2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[hydroxy-[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] hexadecanoate
[1-carboxy-3-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate
[(2R)-2-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-hexadec-9-enoate
[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[1-carboxy-3-[3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
[(2S)-1-[(E)-pentadec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] hexadecanoate
2-[hydroxy-[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] nonadecanoate
[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] nonadecanoate
2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
[1-carboxy-3-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
[1-carboxy-3-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[[2-decanoyloxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-dodecanoyloxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H73NO8P+ (714.5073527999999)
2-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(18Z,21Z,24Z)-dotriaconta-18,21,24-trienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[3-octoxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-hexadecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-decoxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecoxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-octanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
1-pentadecanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate
1-(13Z,16Z-docosadienoyl)-2-pentadecanoyl-glycero-3-phosphate
1-Oleoyl-2-nonadecanoyl-sn-glycero-3-phosphate(2-)
A 1,2-diacyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-oleoyl-2-nonadecanoyl-sn-glycero-3-phosphate.
TG(44:11)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
AcHexZyE(11:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
TG(43:11)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
phSM(34:3)
C39H75N2O7P (714.5311610000001)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGDG(31:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(36:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PMe(36:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(35:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(35:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved