Exact Mass: 707.4720560000001
Exact Mass Matches: 707.4720560000001
Found 277 metabolites which its exact mass value is equals to given mass value 707.4720560000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Spirolide D
Spirolide D is found in mollusks. Spirolide D is isolated from Mytilus edulis (blue mussel
PE(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PE(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z))
PE(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PS(14:0/16:0)
PS(14:0/16:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:0/16:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(14:0/16:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(14:0/16:0), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one hexadecanoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(16:0/14:0)
PS(16:0/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/14:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of myristic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the myristic acid moiety is derived from nutmeg and butter. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/14:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/14:0), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one tetradecanoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(15:0/15:0)
PS(15:0/15:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(15:0/15:0), in particular, consists of two pentadecanoyl chains at positions C-1 and C-2. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
Narlaprevir
C36H61N5O7S (707.4291476000001)
Obtusolactam-20(R)-O-[??-thevetopyranosyl-(1鈥樏傗垎4)-??-cymaropyranoside]|Occidentalol I
C39H65NO10_2-{6-[5-Hydroxy-3-(2-hydroxy-2-propanyl)-6a,9b-dimethyldodecahydrocyclopenta[f]chromen-7-yl]-4a-methyl-3,4,4a,7,8,8a-hexahydro-2H-chromen-2-yl}-2-propanyl 2-acetamido-2-deoxy-6-O-methylhexopyranoside
PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/12:0)
PE(12:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
Spirolide D
2-{6-[5-Hydroxy-3-(2-hydroxy-2-propanyl)-6a,9b-dimethyldodecahydrocyclopenta[f]chromen-7-yl]-4a-methyl-3,4,4a,7,8,8a-hexahydro-2H-chromen-2-yl}-2-propanyl 2-acetamido-2-deoxy-6-O-methylhexopyranoside
Narlaprevir
C36H61N5O7S (707.4291476000001)
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
(1R,5S)-3-[2-[[1-(tert-butylsulfonylmethyl)cyclohexyl]carbamoylamino]-3,3-dimethylbutanoyl]-N-[1-(cyclopropylamino)-1,2-dioxoheptan-3-yl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2-carboxamide
C36H61N5O7S (707.4291476000001)
(4R,6S,8S,10Z,12R,14R,16E,18R,19R,20S,21S)-11,19,21trihydroxy22[(2S,5S)5[(2R,5S)5[(1R)1 hydroxyethyl]5methyloxolan2yl]5methyloxolan2-yl] 4,6,8,12,14,18, 20 heptamethyl-9-oxodocosa-10,16-dienoate
2-Amino-3-[(2-hexadecanoyloxy-3-tetradecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
[3-octoxy-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyicosa-11,14-dienoyl]amino]henicosa-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
(4E,8E,12E)-3-hydroxy-2-[[(14Z,16Z)-2-hydroxydocosa-14,16-dienoyl]amino]nonadeca-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z)-2-hydroxyhexacosa-11,14-dienoyl]amino]pentadeca-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] heptanoate
C40H70NO7P (707.4889639999999)
(4E,8E,12E)-3-hydroxy-2-[[(18Z,21Z)-2-hydroxytetracosa-18,21-dienoyl]amino]heptadeca-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
(4E,8E,12E)-3-hydroxy-2-[[(10Z,12Z)-2-hydroxyoctadeca-10,12-dienoyl]amino]tricosa-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]propan-2-yl] nonanoate
C40H70NO7P (707.4889639999999)
(4E,8E,12E)-3-hydroxy-2-[[(4Z,7Z)-2-hydroxyhexadeca-4,7-dienoyl]amino]pentacosa-4,8,12-triene-1-sulfonic acid
C41H73NO6S (707.5158317999999)
[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-hexanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[2-octanoyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[2-butanoyloxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
2-Amino-3-[(3-hexadecoxy-2-pentadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(3-octadecoxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropanoic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] undecanoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C40H70NO7P (707.4889639999999)
2-Amino-3-[(3-decoxy-2-henicosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-heptadecanoyloxy-3-tetradecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-decanoyloxy-3-henicosoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(3-icosoxy-2-undecanoyloxypropoxy)phosphoryl]oxypropanoic acid
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
2-Amino-3-[(2-dodecanoyloxy-3-nonadecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-heptadecoxy-2-tetradecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(2-octadecanoyloxy-3-tridecoxypropoxy)phosphoryl]oxypropanoic acid
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[3-decoxy-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
2-Amino-3-[(2-hexadecanoyloxy-3-pentadecoxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(2-icosanoyloxy-3-undecoxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[(3-dodecoxy-2-nonadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-[4-[12-hydroxy-10,13-dimethyl-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
2-[4-(10,13-dimethyl-3-pentadecanoyloxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoylamino]ethanesulfonic acid
C41H73NO6S (707.5158317999999)
2-[4-[12-hydroxy-10,13-dimethyl-3-[(Z)-tetradec-9-enoyl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid
C40H69NO7S (707.4794483999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] tridecanoate
C40H70NO7P (707.4889639999999)
[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]propan-2-yl] (Z)-tridec-9-enoate
C40H70NO7P (707.4889639999999)
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (Z)-pentadec-9-enoate
C40H70NO7P (707.4889639999999)
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-heptadec-9-enoate
C40H70NO7P (707.4889639999999)
[2-decanoyloxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C40H70NO7P (707.4889639999999)
2-Amino-3-[hydroxy-(2-pentacosanoyloxy-3-pentanoyloxypropoxy)phosphoryl]oxypropanoic acid
2-Amino-3-[(2-docosanoyloxy-3-octanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-heptanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-butanoyloxy-2-hexacosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-henicosanoyloxy-3-nonanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-hexanoyloxy-2-tetracosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
2-Amino-3-[2,3-di(pentadecanoyloxy)propoxy-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(2-heptadecanoyloxy-3-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-dodecanoyloxy-2-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[(3-decanoyloxy-2-icosanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
2-Amino-3-[hydroxy-(2-nonadecanoyloxy-3-undecanoyloxypropoxy)phosphoryl]oxypropanoic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
2-Amino-3-[(2-heptacosanoyloxy-3-propanoyloxypropoxy)-hydroxyphosphoryl]oxypropanoic acid
[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhenicos-4-en-2-yl]acetamide
C35H65NO13 (707.4455680000001)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydecan-2-yl]tridec-9-enamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynon-4-en-2-yl]tetradecanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyundec-4-en-2-yl]dodecanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydec-4-en-2-yl]tridecanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonadec-4-en-2-yl]butanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoct-4-en-2-yl]pentadecanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyicos-4-en-2-yl]propanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxydodec-4-en-2-yl]undecanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctadec-4-en-2-yl]pentanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyheptadec-4-en-2-yl]hexanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyhexadec-4-en-2-yl]heptanamide
C35H65NO13 (707.4455680000001)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxyoctan-2-yl]pentadec-9-enamide
C35H65NO13 (707.4455680000001)
(Z)-N-[1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxynonan-2-yl]tetradec-9-enamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytridec-4-en-2-yl]decanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxypentadec-4-en-2-yl]octanamide
C35H65NO13 (707.4455680000001)
N-[(E)-1-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3-hydroxytetradec-4-en-2-yl]nonanamide
C35H65NO13 (707.4455680000001)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
(2R)-2-amino-3-[hydroxy-[(2S)-3-nonadecanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-octadec-11-enoate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (11E,13E,15E)-octadeca-11,13,15-trienoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
(2S)-2-amino-3-[hydroxy-[(2S)-2-nonadecanoyloxy-3-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid
(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (10E,12E)-octadeca-10,12-dienoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-icosanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
(2R)-2-amino-3-[[(2S)-3-heptadecanoyloxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]undecoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytridecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]undec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxynonadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(8E,12E,16E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
phosphatidylethanolamine 34:6 zwitterion
A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 34 carbons in total with 6 double bonds.
MePC(31:6)
C40H70NO7P (707.4889639999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PC(31:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PC(32:6)
C40H70NO7P (707.4889639999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(3r,5s)-5-[(1r,4s,6r,7s,9r,10e,12r,17r,19r,20s,29s,32s)-9,32-dihydroxy-6,10,13,19,20,32-hexamethyl-27-methylidene-33,34,35-trioxa-22-azahexacyclo[27.3.1.1¹,⁴.1⁴,⁷.0¹²,¹⁷.0¹⁷,²³]pentatriaconta-10,13,22-trien-14-yl]-3-methyloxolan-2-one
(3r)-5-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-1-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-7,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-3-hydroxy-n-(2-methoxy-2-oxoethyl)-3-methyl-5-oxopentanimidic acid
5-{[1-(5,6-dihydroxy-6-methylheptan-2-yl)-7,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-3-hydroxy-n-(2-methoxy-2-oxoethyl)-3-methyl-5-oxopentanimidic acid
5-{[(1r,3as,7r,8r,9as,11s,11ar)-1-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-8,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3-hydroxy-n-(2-methoxy-2-oxoethyl)-3-methyl-5-oxopentanimidic acid
5-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-1-[(2r,5r)-5,6-dihydroxy-6-methylheptan-2-yl]-7,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-3-hydroxy-n-(2-methoxy-2-oxoethyl)-3-methyl-5-oxopentanimidic acid
5-{9,32-dihydroxy-6,10,13,19,20,32-hexamethyl-27-methylidene-33,34,35-trioxa-22-azahexacyclo[27.3.1.1¹,⁴.1⁴,⁷.0¹²,¹⁷.0¹⁷,²³]pentatriaconta-10,13,22-trien-14-yl}-3-methyloxolan-2-one
(1s,4s,4as,6s,8as)-4-hydroxy-4,8a-dimethyl-6-(prop-1-en-2-yl)-octahydronaphthalen-1-yl (2s,3s,4r)-3,4-dihydroxy-1-[(2s)-2-[(2s)-2-[(2r)-2-hydroxy-n,3-dimethylbutanamido]-n,3-dimethylbutanamido]-3-methylbutanoyl]-3-methylpyrrolidine-2-carboxylate
C38H65N3O9 (707.4720560000001)
5-{[1-(5,6-dihydroxy-6-methylheptan-2-yl)-8,11-dihydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3-hydroxy-n-(2-methoxy-2-oxoethyl)-3-methyl-5-oxopentanimidic acid
4-hydroxy-4,8a-dimethyl-6-(prop-1-en-2-yl)-octahydronaphthalen-1-yl 3,4-dihydroxy-1-{2-[2-(2-hydroxy-n,3-dimethylbutanamido)-n,3-dimethylbutanamido]-3-methylbutanoyl}-3-methylpyrrolidine-2-carboxylate
C38H65N3O9 (707.4720560000001)