Exact Mass: 706.471

Exact Mass Matches: 706.471

Found 419 metabolites which its exact mass value is equals to given mass value 706.471, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PA(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O8P (706.4573)


PA(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0)

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C40H67O8P (706.4573)


PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(13:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-(tridecanoyloxy)propoxy]phosphonic acid

C36H67O11P (706.4421)


PA(13:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGF1alpha), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H67O11P (706.4421)


PA(PGF1alpha/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/13:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(16:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-(hexadecanoyloxy)propoxy]phosphonic acid

C37H71O10P (706.4785)


PA(16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one hexadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/16:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-(hexadecanoyloxy)propoxy]phosphonic acid

C37H71O10P (706.4785)


PA(18:1(12Z)-2OH(9,10)/16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of hexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-13:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H67O11P (706.4421)


PA(a-13:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGF1alpha), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/a-13:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H67O11P (706.4421)


PA(PGF1alpha/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/a-13:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-13:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H67O11P (706.4421)


PA(i-13:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGF1alpha), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/i-13:0)

PA(PGF1alpha/i-13:0)

C36H67O11P (706.4421)


PA(PGF1alpha/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/i-13:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-16:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(14-methylpentadecanoyl)oxy]propoxy]phosphonic acid

C37H71O10P (706.4785)


PA(i-16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 14-methylpentadecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/i-16:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(14-methylpentadecanoyl)oxy]propoxy]phosphonic acid

C37H71O10P (706.4785)


PA(18:1(12Z)-2OH(9,10)/i-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 14-methylpentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:1(12Z)-O(9S,10R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C36H67O11P (706.4421)


PG(i-12:0/18:1(12Z)-O(9S,10R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:1(12Z)-O(9S,10R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9,10-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-O(9S,10R)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-[(8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoyl)oxy]propoxy]phosphinic acid

C36H67O11P (706.4421)


PG(18:1(12Z)-O(9S,10R)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-O(9S,10R)/i-12:0), in particular, consists of one chain of one 9,10-epoxy-octadecenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/18:1(9Z)-O(12,13))

PG(i-12:0/18:1(9Z)-O(12,13))

C36H67O11P (706.4421)


PG(i-12:0/18:1(9Z)-O(12,13)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/18:1(9Z)-O(12,13)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12,13-epoxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(9Z)-O(12,13)/i-12:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(9Z)-11-(3-pentyloxiran-2-yl)undec-9-enoyl]oxy}propoxy]phosphinic acid

C36H67O11P (706.4421)


PG(18:1(9Z)-O(12,13)/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(9Z)-O(12,13)/i-12:0), in particular, consists of one chain of one 12,13-epoxy-octadecenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

Cer(d17:1/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-{[(2S,3R)-1,3-dihydroxyheptadec-4-en-2-yl]-C-hydroxycarbonimidoyl}ethyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C40H70N2O6S (706.4954)


Cer(d17:1/LTE4) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   
   
   
   
   
   
   
   

guanaconetin-2

guanaconetin-2

C41H70O9 (706.502)


   
   

Venturicidin B

Venturicidin B

C40H66O10 (706.4656)


   

guanaconetin-1

guanaconetin-1

C41H70O9 (706.502)


   

3-O-[beta-glucopyranosyl(1?2)-O-beta-xylopyranosyl]-stigmasterol|voulkensin E

3-O-[beta-glucopyranosyl(1?2)-O-beta-xylopyranosyl]-stigmasterol|voulkensin E

C40H66O10 (706.4656)


   

(20S)-6-O-[ (E)-but-2-enoyl-(1?6)-beta-D-glucopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,12,20-trihydroxydammar-24-en-6-yl 6-O-[(2E)-1-oxobut-2-en-1-yl]-beta-D-glucopyranoside

(20S)-6-O-[ (E)-but-2-enoyl-(1?6)-beta-D-glucopyranosyl]dammar-24-ene-3beta,6alpha,12beta,20-tetrol|(3beta,6alpha,12beta)-3,12,20-trihydroxydammar-24-en-6-yl 6-O-[(2E)-1-oxobut-2-en-1-yl]-beta-D-glucopyranoside

C40H66O10 (706.4656)


   

Ophiopogonin B

Ophiopogonin B

C39H62O11 (706.4292)


   
   

O7,O21-Di-Ac-Bafilomycin A1

O7,O21-Di-Ac-Bafilomycin A1

C39H62O11 (706.4292)


   

PG 17:0-14:1-d5

PG 17:0-14:1-d5

C37H71O10P (706.4785)


   

PG(17:0/14:1)

[(2R)-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate

C37H71O10P (706.4785)


   

PG(12:0/19:1(9Z))

1-dodecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(13:0/18:1(9Z))

1-tridecanoyl-2-(9Z-octadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(14:0/17:1(9Z))

1-tetradecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(14:1(9Z)/17:0)

1-(9Z-tetradecenoyl)-2-heptadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(15:1(9Z)/16:0)

1-(9Z-pentadecenoyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(16:0/15:1(9Z))

1-hexadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(16:1(9Z)/15:0)

1-(9Z-hexadecenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(17:1(9Z)/14:0)

1-(9Z-heptadecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(18:1(9Z)/13:0)

1-(9Z-octadecenoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(19:1(9Z)/12:0)

1-(9Z-nonadecenoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(15:0/16:1(9Z))

1-pentadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG(O-16:0/16:1(9Z))

1-hexadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PG(O-18:0/14:1(9Z))

1-octadecyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PG(P-16:0/16:0)

1-(1Z-hexadecenyl)-2-hexadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PG(P-18:0/14:0)

1-(1Z-octadecenyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PG(P-20:0/12:0)

1-(1Z-eicosenyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PA(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-pentadecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(17:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-heptadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(17:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z))

1-(9Z,12Z-heptadecadienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(20:4(5Z,8Z,11Z,14Z)/17:2(9Z,12Z))

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/17:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/15:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-pentadecanoyl-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA(O-16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-hexadecyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C41H71O7P (706.4937)


   

PA(P-18:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-(1Z-octadecenyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C41H71O7P (706.4937)


   

PG 31:1

1-tetradecanoyl-2-(9R, 11S-methylene-hexadecanoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

PG O-32:1

1-(1Z-octadecenyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

PA 37:6

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C40H67O8P (706.4573)


   

PA O-38:6

1-(1Z-octadecenyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C41H71O7P (706.4937)


   

oxybis(ethane-2,1-diyloxyethane-2,1-diyl) bis[3-(dodecylthio)propionate]

oxybis(ethane-2,1-diyloxyethane-2,1-diyl) bis[3-(dodecylthio)propionate]

C38H74O7S2 (706.4876)


   

Light Stabilizer HS-944

Light Stabilizer HS-944

C35H69Cl3N8 (706.471)


   

alpha-rhamnosyl-(1->2)-beta-D-glucosyl-solanidine

alpha-rhamnosyl-(1->2)-beta-D-glucosyl-solanidine

C39H64NO10+ (706.453)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] tetradecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[8-(2-hexylcyclopropyl)octanoyloxy]propyl] tetradecanoate

C37H71O10P (706.4785)


   

PA(13:0/PGF1alpha)

PA(13:0/PGF1alpha)

C36H67O11P (706.4421)


   

PA(PGF1alpha/13:0)

PA(PGF1alpha/13:0)

C36H67O11P (706.4421)


   

PA(a-13:0/PGF1alpha)

PA(a-13:0/PGF1alpha)

C36H67O11P (706.4421)


   

PA(PGF1alpha/a-13:0)

PA(PGF1alpha/a-13:0)

C36H67O11P (706.4421)


   

PA(i-13:0/PGF1alpha)

PA(i-13:0/PGF1alpha)

C36H67O11P (706.4421)


   

PA(PGF1alpha/i-13:0)

PA(PGF1alpha/i-13:0)

C36H67O11P (706.4421)


   

PG(i-12:0/18:1(12Z)-O(9S,10R))

PG(i-12:0/18:1(12Z)-O(9S,10R))

C36H67O11P (706.4421)


   

PG(18:1(12Z)-O(9S,10R)/i-12:0)

PG(18:1(12Z)-O(9S,10R)/i-12:0)

C36H67O11P (706.4421)


   

PG(i-12:0/18:1(9Z)-O(12,13))

PG(i-12:0/18:1(9Z)-O(12,13))

C36H67O11P (706.4421)


   

PG(18:1(9Z)-O(12,13)/i-12:0)

PG(18:1(9Z)-O(12,13)/i-12:0)

C36H67O11P (706.4421)


   

PA(16:0/18:1(12Z)-2OH(9,10))

PA(16:0/18:1(12Z)-2OH(9,10))

C37H71O10P (706.4785)


   

PA(18:1(12Z)-2OH(9,10)/16:0)

PA(18:1(12Z)-2OH(9,10)/16:0)

C37H71O10P (706.4785)


   

PA(i-16:0/18:1(12Z)-2OH(9,10))

PA(i-16:0/18:1(12Z)-2OH(9,10))

C37H71O10P (706.4785)


   

PA(18:1(12Z)-2OH(9,10)/i-16:0)

PA(18:1(12Z)-2OH(9,10)/i-16:0)

C37H71O10P (706.4785)


   
   

1-(9Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-(9Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C41H71O7P-2 (706.4937)


   

Mgdg O-8:0_24:5

Mgdg O-8:0_24:5

C41H70O9 (706.502)


   

Mgdg O-26:5_6:0

Mgdg O-26:5_6:0

C41H70O9 (706.502)


   

Mgdg O-28:5_4:0

Mgdg O-28:5_4:0

C41H70O9 (706.502)


   

Mgdg O-24:5_8:0

Mgdg O-24:5_8:0

C41H70O9 (706.502)


   

Mgdg O-12:0_20:5

Mgdg O-12:0_20:5

C41H70O9 (706.502)


   

Mgdg O-16:3_16:2

Mgdg O-16:3_16:2

C41H70O9 (706.502)


   

Mgdg O-16:2_16:3

Mgdg O-16:2_16:3

C41H70O9 (706.502)


   

Mgdg O-10:0_22:5

Mgdg O-10:0_22:5

C41H70O9 (706.502)


   

Mgdg O-16:1_16:4

Mgdg O-16:1_16:4

C41H70O9 (706.502)


   

Mgdg O-18:4_14:1

Mgdg O-18:4_14:1

C41H70O9 (706.502)


   

Mgdg O-16:4_16:1

Mgdg O-16:4_16:1

C41H70O9 (706.502)


   

Mgdg O-20:5_12:0

Mgdg O-20:5_12:0

C41H70O9 (706.502)


   

Mgdg O-18:5_14:0

Mgdg O-18:5_14:0

C41H70O9 (706.502)


   

Mgdg O-14:0_18:5

Mgdg O-14:0_18:5

C41H70O9 (706.502)


   

[(8E,12E,16E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O7P (706.4686)


   

Mgdg O-14:1_18:4

Mgdg O-14:1_18:4

C41H70O9 (706.502)


   

Mgdg O-22:5_10:0

Mgdg O-22:5_10:0

C41H70O9 (706.502)


   

PE-Cer 14:2;2O/24:4

PE-Cer 14:2;2O/24:4

C40H71N2O6P (706.5049)


   

PE-Cer 16:0;2O/22:6

PE-Cer 16:0;2O/22:6

C40H71N2O6P (706.5049)


   

PE-Cer 20:3;2O/18:3

PE-Cer 20:3;2O/18:3

C40H71N2O6P (706.5049)


   

PE-Cer 12:2;2O/26:4

PE-Cer 12:2;2O/26:4

C40H71N2O6P (706.5049)


   

PE-Cer 12:1;2O/26:5

PE-Cer 12:1;2O/26:5

C40H71N2O6P (706.5049)


   

PE-Cer 14:0;2O/24:6

PE-Cer 14:0;2O/24:6

C40H71N2O6P (706.5049)


   

PE-Cer 20:2;2O/18:4

PE-Cer 20:2;2O/18:4

C40H71N2O6P (706.5049)


   

PE-Cer 16:1;2O/22:5

PE-Cer 16:1;2O/22:5

C40H71N2O6P (706.5049)


   

PE-Cer 16:2;2O/22:4

PE-Cer 16:2;2O/22:4

C40H71N2O6P (706.5049)


   

PE-Cer 14:3;2O/24:3

PE-Cer 14:3;2O/24:3

C40H71N2O6P (706.5049)


   

PE-Cer 22:3;2O/16:3

PE-Cer 22:3;2O/16:3

C40H71N2O6P (706.5049)


   

PE-Cer 20:1;2O/18:5

PE-Cer 20:1;2O/18:5

C40H71N2O6P (706.5049)


   

PE-Cer 18:1;2O/20:5

PE-Cer 18:1;2O/20:5

C40H71N2O6P (706.5049)


   

PE-Cer 14:1;2O/24:5

PE-Cer 14:1;2O/24:5

C40H71N2O6P (706.5049)


   

PE-Cer 18:3;2O/20:3

PE-Cer 18:3;2O/20:3

C40H71N2O6P (706.5049)


   

PE-Cer 16:3;2O/22:3

PE-Cer 16:3;2O/22:3

C40H71N2O6P (706.5049)


   

PE-Cer 18:2;2O/20:4

PE-Cer 18:2;2O/20:4

C40H71N2O6P (706.5049)


   

PE-Cer 12:0;2O/26:6

PE-Cer 12:0;2O/26:6

C40H71N2O6P (706.5049)


   

PE-Cer 22:2;2O/16:4

PE-Cer 22:2;2O/16:4

C40H71N2O6P (706.5049)


   

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (Z)-tridec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] heptadecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] decanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] hexadecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-hexadec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] tridecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-heptadec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-tetradec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] octadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] octadecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-octadec-9-enoate

C38H75O9P (706.5148)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] dodecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] pentadecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-pentadec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-henicos-11-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] undecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] tetradecanoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-icos-11-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-nonadec-9-enoate

C38H75O9P (706.5148)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] nonadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] nonadecanoate

C38H75O9P (706.5148)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H70O6 (706.5172)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H70O6 (706.5172)


   

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H70O6 (706.5172)


   

PEtOH 15:1_20:5

PEtOH 15:1_20:5

C40H67O8P (706.4573)


   

PMeOH 18:2_18:4

PMeOH 18:2_18:4

C40H67O8P (706.4573)


   

PEtOH 17:2_18:4

PEtOH 17:2_18:4

C40H67O8P (706.4573)


   

PEtOH 13:0_22:6

PEtOH 13:0_22:6

C40H67O8P (706.4573)


   

PMeOH 18:1_18:5

PMeOH 18:1_18:5

C40H67O8P (706.4573)


   

PMeOH 14:0_22:6

PMeOH 14:0_22:6

C40H67O8P (706.4573)


   

PEtOH 17:1_18:5

PEtOH 17:1_18:5

C40H67O8P (706.4573)


   

PEtOH 13:1_22:5

PEtOH 13:1_22:5

C40H67O8P (706.4573)


   

PMeOH 16:2_20:4

PMeOH 16:2_20:4

C40H67O8P (706.4573)


   

PMeOH 14:1_22:5

PMeOH 14:1_22:5

C40H67O8P (706.4573)


   

PMeOH 18:3_18:3

PMeOH 18:3_18:3

C40H67O8P (706.4573)


   

PMeOH 16:1_20:5

PMeOH 16:1_20:5

C40H67O8P (706.4573)


   

PEtOH 19:2_16:4

PEtOH 19:2_16:4

C40H67O8P (706.4573)


   

PMeOH 20:2_16:4

PMeOH 20:2_16:4

C40H67O8P (706.4573)


   

PMeOH 16:3_20:3

PMeOH 16:3_20:3

C40H67O8P (706.4573)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C40H66O10 (706.4656)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C40H66O10 (706.4656)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C40H66O10 (706.4656)


   

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H62O11 (706.4292)


   

6-[2-dodecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-dodecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C39H62O11 (706.4292)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C40H66O10 (706.4656)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C40H66O10 (706.4656)


   

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H71N2O6P (706.5049)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C37H71O10P (706.4785)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate

C37H71O10P (706.4785)


   

[(2R)-1,1,2,3,3-pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-1,1,2,3,3-pentadeuterio-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate

C37H71O10P (706.4785)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-henicos-11-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexadecanoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] octadecanoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] heptadecanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] heptadecanoate

C37H71O10P (706.4785)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C37H71O10P (706.4785)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-docos-13-enoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C37H71O10P (706.4785)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C40H67O8P (706.4573)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] heptadecanoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C37H71O10P (706.4785)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

C40H67O8P (706.4573)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-nonadec-9-enoate

C37H71O10P (706.4785)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] octadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] octadecanoate

C37H71O10P (706.4785)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] hexadecanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] hexadecanoate

C37H71O10P (706.4785)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-icos-11-enoate

C37H71O10P (706.4785)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C40H67O8P (706.4573)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

C37H71O10P (706.4785)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C40H67O8P (706.4573)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate

C40H67O8P (706.4573)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

C37H71O10P (706.4785)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C40H67O8P (706.4573)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C40H67O8P (706.4573)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C37H71O10P (706.4785)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C45H70O6 (706.5172)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

C45H70O6 (706.5172)


   

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C45H70O6 (706.5172)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropan-2-yl] (9Z,12Z)-pentadeca-9,12-dienoate

C45H70O6 (706.5172)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C45H70O6 (706.5172)


   

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C45H70O6 (706.5172)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C45H70O6 (706.5172)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C45H70O6 (706.5172)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C45H70O6 (706.5172)


   

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C45H70O6 (706.5172)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C45H70O6 (706.5172)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C45H70O6 (706.5172)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C45H70O6 (706.5172)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C45H70O6 (706.5172)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C45H70O6 (706.5172)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (10Z,12Z)-octadeca-10,12-dienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (10Z,12Z)-octadeca-10,12-dienoate

C45H70O6 (706.5172)


   

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (7Z,9Z)-tetradeca-7,9-dienoate

2,3-bis[[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy]propyl (7Z,9Z)-tetradeca-7,9-dienoate

C45H70O6 (706.5172)


   

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C45H70O6 (706.5172)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C45H70O6 (706.5172)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-hexadec-9-enoate

C37H71O10P (706.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-icos-11-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-icos-11-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C37H71O10P (706.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-6-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-6-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C37H71O10P (706.4785)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C40H67O8P (706.4573)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] heptadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] heptadecanoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] hexadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] hexadecanoate

C37H71O10P (706.4785)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H66O10 (706.4656)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

C37H71O10P (706.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-9-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-9-enoate

C37H71O10P (706.4785)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C40H67O8P (706.4573)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H65NO8P+ (706.4448)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate

C40H67O8P (706.4573)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-henicosa-9,11-dienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E)-henicosa-9,11-dienoate

C40H67O8P (706.4573)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C37H71O10P (706.4785)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C40H67O8P (706.4573)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-7-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-7-enoate

C37H71O10P (706.4785)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] octadec-17-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] octadec-17-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-heptadec-9-enoate

C37H71O10P (706.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-pentadecanoyloxypropyl] (E)-hexadec-7-enoate

C37H71O10P (706.4785)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H65NO8P+ (706.4448)


   

[1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-pentadecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C40H66O10 (706.4656)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C40H67O8P (706.4573)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-icos-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-icos-13-enoate

C37H71O10P (706.4785)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] hexadecanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] hexadecanoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] heptadecanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] heptadecanoate

C37H71O10P (706.4785)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H66O10 (706.4656)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C40H67O8P (706.4573)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-11-enoate

C37H71O10P (706.4785)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-henicos-9-enoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-henicos-9-enoate

C40H67O8P (706.4573)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C40H67O8P (706.4573)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-heptadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-heptadec-9-enoate

C37H71O10P (706.4785)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H67O8P (706.4573)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C40H67O8P (706.4573)


   

[1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(E)-pentadec-9-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C40H66O10 (706.4656)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C40H67O8P (706.4573)


   

[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C40H66O10 (706.4656)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] octadec-17-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C40H67O8P (706.4573)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-11-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-11-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C40H67O8P (706.4573)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C40H67O8P (706.4573)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-13-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-13-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

C37H71O10P (706.4785)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C37H71O10P (706.4785)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate

C40H67O8P (706.4573)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-4-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-octadec-4-enoate

C37H71O10P (706.4785)


   

[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C40H66O10 (706.4656)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-icos-13-enoate

C37H71O10P (706.4785)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO7P+ (706.4811)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO7P+ (706.4811)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO7P+ (706.4811)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO7P+ (706.4811)


   

2-[[2-butanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-butanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C40H69NO7P+ (706.4811)


   

1-hexadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-hexadecyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C38H75O9P (706.5148)


   

1-tetradecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

1-tetradecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O10P (706.4785)


   

phosphatidylserine 30:0(1-)

phosphatidylserine 30:0(1-)

C36H69NO10P (706.4659)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 30 carbons in total and 0 double bonds.

   

1-(9Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphate(2-)

1-(9Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphate(2-)

C41H71O7P (706.4937)


A 1-alkyl-2-acyl-sn-glycero-3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-(9Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphate; major species at pH 7.3.

   

TG(42:8)

TG(18:2_12:3_12:3)

C45H70O6 (706.5172)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SM(35:6)

SM(d14:0_21:6)

C40H71N2O6P (706.5049)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(36:6)

BisMePA(16:2(1)_20:4)

C41H71O7P (706.4937)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(36:6)

PEt(16:2(1)_20:4)

C41H71O7P (706.4937)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

FAHFA 22:7/O-26:7

FAHFA 22:7/O-26:7

C48H66O4 (706.4961)


   

FAHFA 23:7/O-25:7

FAHFA 23:7/O-25:7

C48H66O4 (706.4961)


   

FAHFA 24:7/O-24:7

FAHFA 24:7/O-24:7

C48H66O4 (706.4961)


   

FAHFA 25:7/O-23:7

FAHFA 25:7/O-23:7

C48H66O4 (706.4961)


   

FAHFA 26:7/O-22:7

FAHFA 26:7/O-22:7

C48H66O4 (706.4961)


   

MGDG 11:0_20:5

MGDG 11:0_20:5

C40H66O10 (706.4656)


   
   

MGDG O-31:6;O

MGDG O-31:6;O

C40H66O10 (706.4656)


   

MGDG O-32:5

MGDG O-32:5

C41H70O9 (706.502)


   

MGMG 32:5

MGMG 32:5

C41H70O9 (706.502)


   
   
   
   

PA O-16:0/22:6

PA O-16:0/22:6

C41H71O7P (706.4937)


   

PA O-16:1/22:5

PA O-16:1/22:5

C41H71O7P (706.4937)


   

PA O-16:2/22:4

PA O-16:2/22:4

C41H71O7P (706.4937)


   

PA O-18:1/20:5

PA O-18:1/20:5

C41H71O7P (706.4937)


   

PA O-18:2/20:4

PA O-18:2/20:4

C41H71O7P (706.4937)


   

PA O-20:2/18:4

PA O-20:2/18:4

C41H71O7P (706.4937)


   

PA P-16:0/22:5

PA P-16:0/22:5

C41H71O7P (706.4937)


   

PA P-16:0/22:5 or PA O-16:1/22:5

PA P-16:0/22:5 or PA O-16:1/22:5

C41H71O7P (706.4937)


   

PA P-16:1/22:4

PA P-16:1/22:4

C41H71O7P (706.4937)


   

PA P-16:1/22:4 or PA O-16:2/22:4

PA P-16:1/22:4 or PA O-16:2/22:4

C41H71O7P (706.4937)


   

PA P-18:0/20:5

PA P-18:0/20:5

C41H71O7P (706.4937)


   

PA P-18:0/20:5 or PA O-18:1/20:5

PA P-18:0/20:5 or PA O-18:1/20:5

C41H71O7P (706.4937)


   

PA P-18:1/20:4

PA P-18:1/20:4

C41H71O7P (706.4937)


   

PA P-18:1/20:4 or PA O-18:2/20:4

PA P-18:1/20:4 or PA O-18:2/20:4

C41H71O7P (706.4937)


   

PA P-20:1/18:4

PA P-20:1/18:4

C41H71O7P (706.4937)


   

PA P-20:1/18:4 or PA O-20:2/18:4

PA P-20:1/18:4 or PA O-20:2/18:4

C41H71O7P (706.4937)


   
   

PA P-38:5 or PA O-38:6

PA P-38:5 or PA O-38:6

C41H71O7P (706.4937)


   

PA 16:0/18:1;O2

PA 16:0/18:1;O2

C37H71O10P (706.4785)


   
   
   
   
   
   
   

PG O-14:0/18:1

PG O-14:0/18:1

C38H75O9P (706.5148)


   

PG O-14:1/18:0

PG O-14:1/18:0

C38H75O9P (706.5148)


   

PG O-16:0/16:1

PG O-16:0/16:1

C38H75O9P (706.5148)


   

PG O-16:1/16:0

PG O-16:1/16:0

C38H75O9P (706.5148)


   

PG O-18:0/12:3;O2

PG O-18:0/12:3;O2

C36H67O11P (706.4421)


   

PG O-18:0/14:1

PG O-18:0/14:1

C38H75O9P (706.5148)


   

PG O-18:1/14:0

PG O-18:1/14:0

C38H75O9P (706.5148)


   

PG O-20:0/11:2;O

PG O-20:0/11:2;O

C37H71O10P (706.4785)


   

PG O-20:1/12:0

PG O-20:1/12:0

C38H75O9P (706.5148)


   

PG O-22:1/10:0

PG O-22:1/10:0

C38H75O9P (706.5148)


   
   
   

PG P-14:0/18:0

PG P-14:0/18:0

C38H75O9P (706.5148)


   

PG P-14:0/18:0 or PG O-14:1/18:0

PG P-14:0/18:0 or PG O-14:1/18:0

C38H75O9P (706.5148)


   

PG P-16:0/16:0

PG P-16:0/16:0

C38H75O9P (706.5148)


   

PG P-16:0/16:0 or PG O-16:1/16:0

PG P-16:0/16:0 or PG O-16:1/16:0

C38H75O9P (706.5148)


   

PG P-18:0/12:2;O2

PG P-18:0/12:2;O2

C36H67O11P (706.4421)


   

PG P-18:0/14:0

PG P-18:0/14:0

C38H75O9P (706.5148)


   

PG P-18:0/14:0 or PG O-18:1/14:0

PG P-18:0/14:0 or PG O-18:1/14:0

C38H75O9P (706.5148)


   

PG P-20:0/12:0

PG P-20:0/12:0

C38H75O9P (706.5148)


   

PG P-20:0/12:0 or PG O-20:1/12:0

PG P-20:0/12:0 or PG O-20:1/12:0

C38H75O9P (706.5148)


   

PG P-22:0/10:0

PG P-22:0/10:0

C38H75O9P (706.5148)


   

PG P-22:0/10:0 or PG O-22:1/10:0

PG P-22:0/10:0 or PG O-22:1/10:0

C38H75O9P (706.5148)


   
   

PG P-32:0 or PG O-32:1

PG P-32:0 or PG O-32:1

C38H75O9P (706.5148)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

CerPE 14:2;O2/24:4

CerPE 14:2;O2/24:4

C40H71N2O6P (706.5049)


   

CerPE 16:0;O2/22:6

CerPE 16:0;O2/22:6

C40H71N2O6P (706.5049)


   

CerPE 16:1;O2/22:5

CerPE 16:1;O2/22:5

C40H71N2O6P (706.5049)


   

CerPE 16:2;O2/22:4

CerPE 16:2;O2/22:4

C40H71N2O6P (706.5049)


   

CerPE 18:1;O2/20:5

CerPE 18:1;O2/20:5

C40H71N2O6P (706.5049)


   

CerPE 18:2;O2/20:4

CerPE 18:2;O2/20:4

C40H71N2O6P (706.5049)


   

CerPE 20:2;O2/18:4

CerPE 20:2;O2/18:4

C40H71N2O6P (706.5049)


   
   
   
   
   
   
   

(3s,4z,6e,8z,10e,12z,14s,15s,16r,17s,18s,21s,23r,24s,25r,26r,27s,28r,30e)-15,17,21,25,27-pentahydroxy-3,23-dimethoxy-14,16,18,24,26,28,30-heptamethyldotriaconta-4,6,8,10,12,30-hexaenoic acid

(3s,4z,6e,8z,10e,12z,14s,15s,16r,17s,18s,21s,23r,24s,25r,26r,27s,28r,30e)-15,17,21,25,27-pentahydroxy-3,23-dimethoxy-14,16,18,24,26,28,30-heptamethyldotriaconta-4,6,8,10,12,30-hexaenoic acid

C41H70O9 (706.502)


   

4-(heptadeca-8,11-dien-1-yl)-4',5,6-trihydroxy-3'-pentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

4-(heptadeca-8,11-dien-1-yl)-4',5,6-trihydroxy-3'-pentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

C44H66O7 (706.4808)


   

(1r,3as,7r,8r,9as,11s,11ar)-7-(acetyloxy)-11-hydroxy-1-[(3r,6r)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

(1r,3as,7r,8r,9as,11s,11ar)-7-(acetyloxy)-11-hydroxy-1-[(3r,6r)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

C39H62O11 (706.4292)


   

4-[(8z,11z)-heptadeca-8,11-dien-1-yl]-4',5,6-trihydroxy-3'-pentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

4-[(8z,11z)-heptadeca-8,11-dien-1-yl]-4',5,6-trihydroxy-3'-pentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

C44H66O7 (706.4808)


   

3-hydroxy-4-[(1-hydroxy-2-{6-[(3e)-2-hydroxypent-3-en-1-yl]-4-methyloxan-2-yl}ethylidene)amino]-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

3-hydroxy-4-[(1-hydroxy-2-{6-[(3e)-2-hydroxypent-3-en-1-yl]-4-methyloxan-2-yl}ethylidene)amino]-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O10 (706.4656)


   

(2s,3r)-3-hydroxy-4-({1-hydroxy-2-[(2s,3s,6r)-3-methyl-6-(2-oxopentyl)oxan-2-yl]ethylidene}amino)-n-{3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

(2s,3r)-3-hydroxy-4-({1-hydroxy-2-[(2s,3s,6r)-3-methyl-6-(2-oxopentyl)oxan-2-yl]ethylidene}amino)-n-{3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

(6e,10e)-3,9-dihydroxy-n-{2-hydroxy-3-[(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-c-hydroxycarbonimidoyl]-3-methylpropyl}-4-methyldodeca-6,10-dienimidic acid

(6e,10e)-3,9-dihydroxy-n-{2-hydroxy-3-[(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-c-hydroxycarbonimidoyl]-3-methylpropyl}-4-methyldodeca-6,10-dienimidic acid

C40H70N2O8 (706.5132)


   

(2r,3r,6r,8e,10e,14s)-3-hydroxy-n-(1-{[(2s)-2-{[(2r,4s)-4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl)-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

(2r,3r,6r,8e,10e,14s)-3-hydroxy-n-(1-{[(2s)-2-{[(2r,4s)-4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl]-c-hydroxycarbonimidoyl}eth-1-en-1-yl)-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

C37H62N4O9 (706.4517)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl pentanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl pentanoate

C39H62O11 (706.4292)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-7-(propanoyloxy)-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-7-(propanoyloxy)-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

C39H62O11 (706.4292)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-2-[(1's,2r,2's,4's,5r,7's,8'r,9's,12's,13'r,14'r)-5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy]oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C39H62O11 (706.4292)


   

3-hydroxy-4-({1-hydroxy-2-[3-methyl-6-(2-oxopentyl)oxan-2-yl]ethylidene}amino)-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

3-hydroxy-4-({1-hydroxy-2-[3-methyl-6-(2-oxopentyl)oxan-2-yl]ethylidene}amino)-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

3-hydroxy-4-[(1-hydroxy-2-{6-[(2r,3e)-2-hydroxypent-3-en-1-yl]-3-methyloxan-2-yl}ethylidene)amino]-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

3-hydroxy-4-[(1-hydroxy-2-{6-[(2r,3e)-2-hydroxypent-3-en-1-yl]-3-methyloxan-2-yl}ethylidene)amino]-n-(3-{8-[(4e)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

2-[(4,5-dihydroxy-6-methyl-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(4,5-dihydroxy-6-methyl-2-{5,7',9',13'-tetramethyl-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18'-eneoxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C39H62O11 (706.4292)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl (2r)-2-methylbutanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl (2r)-2-methylbutanoate

C39H62O11 (706.4292)


   

3-hydroxy-n-{1-[(2-{[4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

3-hydroxy-n-{1-[(2-{[4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

C37H62N4O9 (706.4517)


   

7-(acetyloxy)-11-hydroxy-1-[2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

7-(acetyloxy)-11-hydroxy-1-[2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

C39H62O11 (706.4292)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl pentanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl pentanoate

C39H62O11 (706.4292)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl 3-methylbutanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-7-(acetyloxy)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl 3-methylbutanoate

C39H62O11 (706.4292)


   

(2e,4e)-7-[(1s,3r,4r,5r,6r,8s,10r,12s,13r)-12-{[(1s,3r,4r,6r,8s,11r,13s,14s)-4,14-dihydroxy-11,13-dimethyl-2,7,12-trioxatricyclo[9.4.0.0³,⁸]pentadecan-6-yl]methyl}-4,13-dihydroxy-1,5,12-trimethyl-2,7,11-trioxatricyclo[8.5.0.0³,⁸]pentadecan-6-yl]-3,4-dimethylhepta-2,4-dienal

(2e,4e)-7-[(1s,3r,4r,5r,6r,8s,10r,12s,13r)-12-{[(1s,3r,4r,6r,8s,11r,13s,14s)-4,14-dihydroxy-11,13-dimethyl-2,7,12-trioxatricyclo[9.4.0.0³,⁸]pentadecan-6-yl]methyl}-4,13-dihydroxy-1,5,12-trimethyl-2,7,11-trioxatricyclo[8.5.0.0³,⁸]pentadecan-6-yl]-3,4-dimethylhepta-2,4-dienal

C39H62O11 (706.4292)


   

7-[12-({4,14-dihydroxy-11,13-dimethyl-2,7,12-trioxatricyclo[9.4.0.0³,⁸]pentadecan-6-yl}methyl)-4,13-dihydroxy-1,5,12-trimethyl-2,7,11-trioxatricyclo[8.5.0.0³,⁸]pentadecan-6-yl]-3,4-dimethylhepta-2,4-dienal

7-[12-({4,14-dihydroxy-11,13-dimethyl-2,7,12-trioxatricyclo[9.4.0.0³,⁸]pentadecan-6-yl}methyl)-4,13-dihydroxy-1,5,12-trimethyl-2,7,11-trioxatricyclo[8.5.0.0³,⁸]pentadecan-6-yl]-3,4-dimethylhepta-2,4-dienal

C39H62O11 (706.4292)


   

3-hydroxy-4-({1-hydroxy-2-[6-(2-hydroxypent-3-en-1-yl)-3-methyloxan-2-yl]ethylidene}amino)-n-{3-[8-(6-hydroxy-3,5-dimethylhept-4-en-1-yl)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

3-hydroxy-4-({1-hydroxy-2-[6-(2-hydroxypent-3-en-1-yl)-3-methyloxan-2-yl]ethylidene}amino)-n-{3-[8-(6-hydroxy-3,5-dimethylhept-4-en-1-yl)-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

2-[(2-{[1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{[1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O10 (706.4656)


   

(8e,10e)-3-hydroxy-n-{1-[(2-{[4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

(8e,10e)-3-hydroxy-n-{1-[(2-{[4-hydroxy-4-(c-hydroxycarbonimidoyl)-1-methoxy-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylethyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienimidic acid

C37H62N4O9 (706.4517)


   

(2s,3r,4s,5r)-4-(acetyloxy)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-hydroxyoxan-3-yl acetate

(2s,3r,4s,5r)-4-(acetyloxy)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5s)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-5-hydroxyoxan-3-yl acetate

C39H62O11 (706.4292)


   

4-(acetyloxy)-2-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-5-hydroxyoxan-3-yl acetate

4-(acetyloxy)-2-({9,14-dihydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl}oxy)-5-hydroxyoxan-3-yl acetate

C39H62O11 (706.4292)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-7-(propanoyloxy)-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-3,4,6-tris(butanoyloxy)-8-hydroxy-1-isopropyl-3a,5a,9-trimethyl-7-(propanoyloxy)-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

C39H62O11 (706.4292)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O10 (706.4656)


   

(3s,4s,6e,9r,10e)-3,9-dihydroxy-n-[(2r,3s)-2-hydroxy-3-({3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-c-hydroxycarbonimidoyl)-3-methylpropyl]-4-methyldodeca-6,10-dienimidic acid

(3s,4s,6e,9r,10e)-3,9-dihydroxy-n-[(2r,3s)-2-hydroxy-3-({3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-c-hydroxycarbonimidoyl)-3-methylpropyl]-4-methyldodeca-6,10-dienimidic acid

C40H70N2O8 (706.5132)


   

(2s,3r)-3-hydroxy-4-({1-hydroxy-2-[(2s,3s,6r)-6-[(2r,3e)-2-hydroxypent-3-en-1-yl]-3-methyloxan-2-yl]ethylidene}amino)-n-{3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

(2s,3r)-3-hydroxy-4-({1-hydroxy-2-[(2s,3s,6r)-6-[(2r,3e)-2-hydroxypent-3-en-1-yl]-3-methyloxan-2-yl]ethylidene}amino)-n-{3-[(2r,3s,6s,8s)-8-[(3s,4e,6s)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]propyl}-2-methylbutanimidic acid

C40H70N2O8 (706.5132)


   

15,17,21,25,27-pentahydroxy-3,23-dimethoxy-14,16,18,24,26,28,30-heptamethyldotriaconta-4,6,8,10,12,30-hexaenoic acid

15,17,21,25,27-pentahydroxy-3,23-dimethoxy-14,16,18,24,26,28,30-heptamethyldotriaconta-4,6,8,10,12,30-hexaenoic acid

C41H70O9 (706.502)


   

methyl 3-[(3s,3ar,4r,5ar,6s,7s,9ar,9br)-4-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

methyl 3-[(3s,3ar,4r,5ar,6s,7s,9ar,9br)-4-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(2s)-2-hydroxy-6-methyl-5-methylideneheptan-2-yl]-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-decahydrocyclopenta[a]naphthalen-6-yl]propanoate

C40H66O10 (706.4656)


   

methyl 3-(4-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-decahydrocyclopenta[a]naphthalen-6-yl)propanoate

methyl 3-(4-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-(2-hydroxy-6-methyl-5-methylideneheptan-2-yl)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-decahydrocyclopenta[a]naphthalen-6-yl)propanoate

C40H66O10 (706.4656)