Exact Mass: 704.6066910000001
Exact Mass Matches: 704.6066910000001
Found 500 metabolites which its exact mass value is equals to given mass value 704.6066910000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
SM(d18:0/16:0)
Sphingomyelin (d18:0/16:0) or SM(d18:0/16:0) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(d18:0/16:0) consists of a sphinganine backbone and a palmitic acid chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase. Sphingomyelin (d18:0/16:0) or SM(d18:0/16:0)is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath which surrounds some nerve cell axons. It usually consists of phosphorylcholine and ceramide. SM(18:0/16:0) consists of stearic acid attached to the C1 position and palmitic acid attached to the C2 position. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SPH has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2 - an enzyme that breaks down sphingomyelin into ceramide has been found to localise exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme Sphingomyelinase, which causes the accumulation of Sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction.
CE(22:2(13Z,16Z))
Cholesteryl docosadienoic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). [HMDB] Cholesteryl docosadienoic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides).
DG(18:1(11Z)/24:1(15Z)/0:0)
DG(18:1(11Z)/24:1(15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/24:1(15Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:1(11Z)/24:1(15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/24:1(15Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:1(9Z)/24:1(15Z)/0:0)
DG(18:1(9Z)/24:1(15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(9Z)/24:1(15Z)/0:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the nervonic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(18:2(9Z,12Z)/24:0/0:0)
DG(18:2(9Z,12Z)/24:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/24:0/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/24:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/24:0/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the lignoceric acid moiety is derived from groundnut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(20:0/22:2(13Z,16Z)/0:0)
DG(20:0/22:2(13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:0/22:2(13Z,16Z)/0:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosadienoic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:0/22:2(13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:0/22:2(13Z,16Z)/0:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the docosadienoic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(20:1(11Z)/22:1(13Z)/0:0)
DG(20:1(11Z)/22:1(13Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:1(11Z)/22:1(13Z)/0:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:2(11Z,14Z)/22:0/0:0)
DG(20:2(11Z,14Z)/22:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/22:0/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the behenic acid moiety is derived from groundnut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:2(11Z,14Z)/22:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/22:0/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of behenic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the behenic acid moiety is derived from groundnut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:0/20:2(11Z,14Z)/0:0)
DG(22:0/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:0/20:2(11Z,14Z)/0:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:0/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:0/20:2(11Z,14Z)/0:0), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:1(13Z)/20:1(11Z)/0:0)
DG(22:1(13Z)/20:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:1(13Z)/20:1(11Z)/0:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:1(13Z)/20:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:1(13Z)/20:1(11Z)/0:0), in particular, consists of one chain of erucic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The erucic acid moiety is derived from seed oils and avocados, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:2(13Z,16Z)/20:0/0:0)
DG(22:2(13Z,16Z)/20:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:2(13Z,16Z)/20:0/0:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:2(13Z,16Z)/20:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:2(13Z,16Z)/20:0/0:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the arachidic acid moiety is derived from peanut oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(24:0/18:2(9Z,12Z)/0:0)
DG(24:0/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(24:0/18:2(9Z,12Z)/0:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of linoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(24:0/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(24:0/18:2(9Z,12Z)/0:0), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of linoleic acid at the C-2 position. The lignoceric acid moiety is derived from groundnut oil, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(24:1(15Z)/18:1(11Z)/0:0)
DG(24:1(15Z)/18:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(24:1(15Z)/18:1(11Z)/0:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(24:1(15Z)/18:1(9Z)/0:0)
DG(24:1(15Z)/18:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(24:1(15Z)/18:1(9Z)/0:0), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of oleic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:0/0:0/22:2n6)
DG(20:0/0:0/22:2n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:0/0:0/22:2n6), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of docosadienoic acid at the C-3 position. The arachidic acid moiety is derived from peanut oil, while the docosadienoic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(22:0/0:0/20:2n6)
DG(22:0/0:0/20:2n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:0/0:0/20:2n6), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosadienoic acid at the C-3 position. The behenic acid moiety is derived from groundnut oil, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:1n7/0:0/24:1n9)
DG(18:1n7/0:0/24:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:1n7/0:0/24:1n9), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of nervonic acid at the C-3 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the nervonic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:1n9/0:0/24:1n9)
DG(18:1n9/0:0/24:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:1n9/0:0/24:1n9), in particular, consists of one chain of oleic acid at the C-1 position and one chain of nervonic acid at the C-3 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the nervonic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(20:1n9/0:0/22:1n9)
DG(20:1n9/0:0/22:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:1n9/0:0/22:1n9), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of erucic acid at the C-3 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the erucic acid moiety is derived from seed oils and avocados. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
CE(MonoMe(11,5))
CE(MonoMe(11,5)) is a cholesterol fatty acid ester or simply a cholesterol ester (CE). Cholesterol esters are cholesterol molecules with long-chain fatty acids linked to the hydroxyl group. They are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesterol esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of C18 fatty acids. Cholesterol esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesterol esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesterol esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesterol esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesterol esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesterol esters from CoA esters of fatty acids and cholesterol. Cholesterol ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells.
CE(10D5)
CE(10D5) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(10D5) refers to the furan fatty acids 10-carbon carboxyalkyl moiety, the dimethyl substitutions in the 3- and 4-positions of its furan moiety, and its 5-carbon alkyl moiety.
CE(11D4)
CE(11D4) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(11D4) refers to the furan fatty acids 11-carbon carboxyalkyl moiety, the dimethyl substitutions in the 3- and 4-positions of its furan moiety, and its 4-carbon alkyl moiety.
CE(12D3)
CE(12D3) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(12D3) refers to the furan fatty acids 12-carbon carboxyalkyl moiety, the dimethyl substitutions in the 3- and 4-positions of its furan moiety, and its 3-carbon alkyl moiety.
CE(13M3)
CE(13M3) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(13M3) refers to the furan fatty acids 13-carbon carboxyalkyl moiety, the methyl substitution in the 3-position of its furan moiety, and its 3-carbon alkyl moiety.
CE(9D6)
CE(9D6) is a furan fatty acid ester of cholesterol or simply a cholesteryl ester (CE). Cholesteryl esters are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesteryl esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesteryl esters tend to contain relatively high proportions of C18 fatty acids. Cholesteryl esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesteryl esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesteryl esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesteryl esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesteryl esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesteryl esters from CoA esters of fatty acids and cholesterol. Cholesteryl ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. The shorthand notation for CE(9D6) refers to the furan fatty acids 9-carbon carboxyalkyl moiety, the dimethyl substitutions in the 3- and 4-positions of its furan moiety, and its 6-carbon alkyl moiety.
CE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
CE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.
CE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
CE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.
CE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
CE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of cholesteryl esters, whose structure is characetized by a cholesterol esterified at the 3-position with a fatty acid. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). CE(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) may also accumulate in hereditary hypercholesterolemia, an inborn error of metabolism.
DG(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(20:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/20:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(20:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/20:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(20:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/20:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(21:0/20:3(6,8,11)-OH(5)/0:0)
DG(21:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(21:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/21:0/0:0)
DG(20:3(6,8,11)-OH(5)/21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(6,8,11)-OH(5)/21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(21:0/0:0/20:3(6,8,11)-OH(5))
DG(21:0/0:0/20:3(6,8,11)-OH(5)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/0:0/21:0)
DG(20:3(6,8,11)-OH(5)/0:0/21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-21:0/20:3(6,8,11)-OH(5)/0:0)
DG(a-21:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-21:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/a-21:0/0:0)
DG(20:3(6,8,11)-OH(5)/a-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(6,8,11)-OH(5)/a-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-21:0/0:0/20:3(6,8,11)-OH(5))
DG(a-21:0/0:0/20:3(6,8,11)-OH(5)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/0:0/a-21:0)
DG(20:3(6,8,11)-OH(5)/0:0/a-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(i-20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-20:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-20:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(i-20:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-20:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(i-20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-20:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-20:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(i-20:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-20:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(i-20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-20:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-20:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-20:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-20:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-20:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(i-20:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-20:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-20:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-21:0/20:3(6,8,11)-OH(5)/0:0)
DG(i-21:0/20:3(6,8,11)-OH(5)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-21:0/20:3(6,8,11)-OH(5)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/i-21:0/0:0)
DG(20:3(6,8,11)-OH(5)/i-21:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(6,8,11)-OH(5)/i-21:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-21:0/0:0/20:3(6,8,11)-OH(5))
DG(i-21:0/0:0/20:3(6,8,11)-OH(5)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:3(6,8,11)-OH(5)/0:0/i-21:0)
DG(20:3(6,8,11)-OH(5)/0:0/i-21:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
(2-{[2-hexadecanamido-3-hydroxyoctadecyl phosphono]oxy}ethyl)trimethylazanium
Cholesteryl 11-hydroperoxy-eicosatetraenoate
[2-(Hexadecanoylamino)-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-hydroxy-2-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropyl] henicosanoate
[(2S)-1-hydroxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropan-2-yl] henicosanoate
[(2R)-2-hydroxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropyl] henicosanoate
[(2S)-2-hydroxy-3-[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxypropyl] henicosanoate
2-[[(2R)-3-[(Z)-hexadec-1-enoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-[(Z)-hexadec-1-enoxy]-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
N-(eicosanoyl)-tetradecasphinganine-1-phosphocholine
[1-hydroxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (13Z,16Z)-docosa-13,16-dienoate
[3-Hydroxy-2-(octanoylamino)hexacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[3-Hydroxy-2-(nonanoylamino)pentacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate
[1-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]-3-hydroxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-hydroxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-3-hydroxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
(2-Acetamido-3-hydroxydotriacontyl) 2-(trimethylazaniumyl)ethyl phosphate
[2-(Hexanoylamino)-3-hydroxyoctacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-hydroxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-hydroxy-3-[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[3-Hydroxy-2-(pentacosanoylamino)nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptanoylamino)-3-hydroxyheptacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] (13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoate
[1-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate
[1-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[2-(Butanoylamino)-3-hydroxytriacontyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(propanoylamino)hentriacontyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate
[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
[3-Hydroxy-2-(pentanoylamino)nonacosyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-3-hydroxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[3-Hydroxy-2-(tetracosanoylamino)decyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(undecanoylamino)tricosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tricosanoylamino)undecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Docosanoylamino)-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Henicosanoylamino)-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Decanoylamino)-3-hydroxytetracosyl] 2-(trimethylazaniumyl)ethyl phosphate
(1-hydroxy-3-octanoyloxypropan-2-yl) (23Z,26Z)-tetratriaconta-23,26-dienoate
(1-decanoyloxy-3-hydroxypropan-2-yl) (21Z,24Z)-dotriaconta-21,24-dienoate
(1-dodecanoyloxy-3-hydroxypropan-2-yl) (19Z,22Z)-triaconta-19,22-dienoate
[17-[(E)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (E)-henicos-9-enoate
[17-[(E)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (E)-icos-11-enoate
[17-(5,6-dimethylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (9E,11E)-henicosa-9,11-dienoate
[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-octacos-17-enoate
[17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (11Z,14Z)-icosa-11,14-dienoate
(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (17Z,20Z)-octacosa-17,20-dienoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-octoxypropyl] (Z)-octadec-9-enoate
[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-octanoyloxypropyl] tetradecanoate
(3-octadecoxy-2-octanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-octanoyloxypropyl] dodecanoate
[3-[(Z)-hexadec-9-enoxy]-2-octanoyloxypropyl] (Z)-octadec-9-enoate
(2-dodecanoyloxy-3-octoxypropyl) (13Z,16Z)-docosa-13,16-dienoate
[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-octanoyloxypropyl] hexadecanoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octoxypropyl] octadecanoate
(3-dodecoxy-2-octanoyloxypropyl) (13Z,16Z)-docosa-13,16-dienoate
[3-octoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-icos-11-enoate
(3-hexadecoxy-2-octanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[3-[(Z)-icos-11-enoxy]-2-octanoyloxypropyl] (Z)-tetradec-9-enoate
(2-nonanoyloxy-3-octanoyloxypropyl) (13Z,16Z)-tetracosa-13,16-dienoate
[2-octanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] (Z)-icos-11-enoate
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-octanoyloxypropyl] octadecanoate
[3-[(Z)-octadec-9-enoxy]-2-octanoyloxypropyl] (Z)-hexadec-9-enoate
(3-octoxy-2-tetradecanoyloxypropyl) (11Z,14Z)-icosa-11,14-dienoate
(2-hexadecanoyloxy-3-octoxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
(2-octanoyloxy-3-tetradecoxypropyl) (11Z,14Z)-icosa-11,14-dienoate
(2-dodecanoyloxy-3-octanoyloxypropyl) (11Z,14Z)-henicosa-11,14-dienoate
(2-dodecanoyloxy-3-nonanoyloxypropyl) (11Z,14Z)-icosa-11,14-dienoate
(3-dodecoxy-2-tetradecanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[2-decanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] (Z)-octadec-9-enoate
(3-octanoyloxy-2-tridecanoyloxypropyl) (11Z,14Z)-icosa-11,14-dienoate
[3-decoxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-nonanoyloxypropyl] (Z)-hexadec-9-enoate
[2-[(Z)-hexadec-9-enoyl]oxy-3-octanoyloxypropyl] (Z)-heptadec-9-enoate
[1-[(Z)-tetradec-9-enoxy]-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] tetradecanoate
(3-nonanoyloxy-2-undecanoyloxypropyl) (11Z,14Z)-henicosa-11,14-dienoate
(3-decoxy-2-tetradecanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[2-dodecanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] tetradecanoate
[2-decanoyloxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propyl] dodecanoate
(3-nonanoyloxy-2-tetradecanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[2-decanoyloxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propyl] decanoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-nonanoyloxypropan-2-yl] hexadecanoate
[3-decoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-octadec-9-enoate
[3-nonanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-nonadec-9-enoate
[3-nonanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (Z)-heptadec-9-enoate
[2-decanoyloxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] hexadecanoate
[2-decanoyloxy-3-[(Z)-hexadec-9-enoxy]propyl] (Z)-hexadec-9-enoate
[2-decanoyloxy-3-[(Z)-octadec-9-enoxy]propyl] (Z)-tetradec-9-enoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-tetradecoxypropyl] (Z)-tetradec-9-enoate
[2-dodecanoyloxy-3-[(Z)-hexadec-9-enoxy]propyl] (Z)-tetradec-9-enoate
(2-hexadecanoyloxy-3-octanoyloxypropyl) (9Z,12Z)-heptadeca-9,12-dienoate
(2-decanoyloxy-3-nonanoyloxypropyl) (13Z,16Z)-docosa-13,16-dienoate
(3-nonanoyloxy-2-tridecanoyloxypropyl) (9Z,12Z)-nonadeca-9,12-dienoate
[3-octanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-icos-11-enoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octanoyloxypropyl] heptadecanoate
(3-octanoyloxy-2-pentadecanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[3-octanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-nonadec-9-enoate
(2-decanoyloxy-3-hexadecoxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[3-dodecoxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate
[3-nonanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-octadec-9-enoate
(3-octanoyloxy-2-tetradecanoyloxypropyl) (9Z,12Z)-nonadeca-9,12-dienoate
(3-nonanoyloxy-2-pentadecanoyloxypropyl) (9Z,12Z)-heptadeca-9,12-dienoate
(2-dodecanoyloxy-3-tetradecoxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[2-dodecanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] dodecanoate
(2-decanoyloxy-3-decoxypropyl) (13Z,16Z)-docosa-13,16-dienoate
[2-decanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] tetradecanoate
(3-octanoyloxy-2-undecanoyloxypropyl) (13Z,16Z)-docosa-13,16-dienoate
(3-decoxy-2-dodecanoyloxypropyl) (11Z,14Z)-icosa-11,14-dienoate
[3-octanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (Z)-octadec-9-enoate
(2-decanoyloxy-3-dodecoxypropyl) (11Z,14Z)-icosa-11,14-dienoate
(2-decanoyloxy-3-tetradecoxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
(2-dodecanoyloxy-3-dodecoxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[2-dodecanoyloxy-3-[(Z)-tetradec-9-enoxy]propyl] (Z)-hexadec-9-enoate
[1-decoxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] hexadecanoate
(3-decanoyloxy-2-dodecanoyloxypropyl) (9Z,12Z)-nonadeca-9,12-dienoate
2,3-di(decanoyloxy)propyl (11Z,14Z)-henicosa-11,14-dienoate
[3-decanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-heptadec-9-enoate
2,3-di(dodecanoyloxy)propyl (9Z,12Z)-heptadeca-9,12-dienoate
(3-dodecanoyloxy-2-tridecanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
2,3-bis[[(Z)-tridec-9-enoyl]oxy]propyl pentadecanoate
[1-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] tetradecanoate
(3-decanoyloxy-2-undecanoyloxypropyl) (11Z,14Z)-icosa-11,14-dienoate
[3-tridecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-pentadec-9-enoate
[2-[(Z)-tridec-9-enoyl]oxy-3-undecanoyloxypropyl] (Z)-heptadec-9-enoate
(2-tridecanoyloxy-3-undecanoyloxypropyl) (9Z,12Z)-heptadeca-9,12-dienoate
2,3-di(undecanoyloxy)propyl (9Z,12Z)-nonadeca-9,12-dienoate
(3-decanoyloxy-2-pentadecanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
(3-decanoyloxy-2-tetradecanoyloxypropyl) (9Z,12Z)-heptadeca-9,12-dienoate
[3-dodecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate
(2-dodecanoyloxy-3-undecanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
(2-tetradecanoyloxy-3-undecanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-undecanoyloxypropyl] (Z)-hexadec-9-enoate
[3-decanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (Z)-hexadec-9-enoate
(3-decanoyloxy-2-tridecanoyloxypropyl) (9Z,12Z)-octadeca-9,12-dienoate
[3-decanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (Z)-octadec-9-enoate
[2-[(Z)-pentadec-9-enoyl]oxy-3-undecanoyloxypropyl] (Z)-pentadec-9-enoate
[2-(Hexacosanoylamino)-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(icosanoylamino)tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(nonadecanoylamino)pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(octadecanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Heptadecanoylamino)-3-hydroxyheptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(pentadecanoylamino)nonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tetradecanoylamino)icosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-Hydroxy-2-(tridecanoylamino)henicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-(Dodecanoylamino)-3-hydroxydocosyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] docosanoate
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] pentacosanoate
(1-hydroxy-3-octadecanoyloxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] hexacosanoate
[3-hydroxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate
(1-hexadecanoyloxy-3-hydroxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] tricosanoate
(1-hydroxy-3-icosanoyloxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-hydroxypropyl] henicosanoate
[1-hydroxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (Z)-docos-13-enoate
[2-[(Z)-henicos-11-enoyl]oxy-3-hydroxypropyl] (Z)-henicos-11-enoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (Z)-hexacos-15-enoate
[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropyl] (Z)-tetradec-9-enoate
[3-dodecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-pentadec-9-enoate
2,3-di(dodecanoyloxy)propyl (11Z,14Z)-heptadeca-11,14-dienoate
(3-dodecanoyloxy-2-tetradecanoyloxypropyl) (9Z,12Z)-pentadeca-9,12-dienoate
(3-dodecanoyloxy-2-tridecanoyloxypropyl) (4Z,7Z)-hexadeca-4,7-dienoate
[3-tridecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (Z)-pentadec-9-enoate
[3-dodecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (Z)-hexadec-7-enoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tetradecanoyloxypropyl] pentadecanoate
2,3-di(tridecanoyloxy)propyl (9Z,12Z)-pentadeca-9,12-dienoate
2,3-bis[[(Z)-tridec-8-enoyl]oxy]propyl pentadecanoate
[3-[(Z)-dodec-5-enoyl]oxy-2-tridecanoyloxypropyl] (Z)-hexadec-7-enoate
[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] hexadecanoate
[1-[(Z)-tetradec-9-enoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropan-2-yl] tetradecanoate
[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-dodecanoyloxypropyl] heptadecanoate
[3-dodecanoyloxy-2-[(Z)-dodec-5-enoyl]oxypropyl] (Z)-heptadec-7-enoate
2,3-bis[[(Z)-dodec-5-enoyl]oxy]propyl heptadecanoate
[3-[(Z)-dodec-5-enoyl]oxy-2-tetradecanoyloxypropyl] (Z)-pentadec-9-enoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] hexadecanoate
[1-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxy-3-tridecanoyloxypropan-2-yl] tetradecanoate
[3-dodecanoyloxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] pentadecanoate
[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentadecanoate
N-(pentadecanoyl)-nonadecasphinganine-1-phosphocholine
N-(tetradecanoyl)-eicosasphinganine-1-phosphocholine
N-(heptadecanoyl)-heptadecasphinganine-1-phosphocholine
N-(nonadecanoyl)-pentadecasphinganine-1-phosphocholine
[(2S)-1-hydroxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropan-2-yl] tetracosanoate
2-[hydroxy-[(2S)-3-[(E)-icos-1-enoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
[(2S)-3-hydroxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] docosanoate
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] pentacosanoate
[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] hexacosanoate
[(2R,3S)-2-(dodecanoylamino)-3-hydroxydocosyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-3-hydroxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] tetracosanoate
[(2S)-1-hydroxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] docosanoate
[(2S)-3-hydroxy-2-[(E)-icos-11-enoyl]oxypropyl] (E)-docos-13-enoate
[(2S)-3-hydroxy-2-icosanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate
2-[hydroxy-[(2S)-3-[(E)-octadec-1-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
[(2S)-1-hydroxy-3-icosanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R,3S)-3-hydroxy-2-(tridecanoylamino)henicosyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (E)-hexacos-5-enoate
[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] pentacosanoate
[(2S)-1-hydroxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (E)-docos-13-enoate
[(2S)-1-hexadecanoyloxy-3-hydroxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
[(2S)-3-hydroxy-2-[(E)-octadec-11-enoyl]oxypropyl] (E)-tetracos-15-enoate
[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (E)-hexacos-5-enoate
[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (13E,16E)-docosa-13,16-dienoate
[(2S)-1-hydroxy-3-[(E)-octadec-11-enoyl]oxypropan-2-yl] (E)-tetracos-15-enoate
2-[[(2R)-3-[(E)-hexadec-1-enoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
[(2S)-2-hexadecanoyloxy-3-hydroxypropyl] (5E,9E)-hexacosa-5,9-dienoate
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-[(Z)-hexadec-9-enoxy]-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-heptadecanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-hexadecoxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[3-octadecoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-[(Z)-docos-13-enoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-[(Z)-hexacos-15-enoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-[(Z)-heptadec-9-enoxy]-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-pentadecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-heptanoyloxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-hexadecanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[3-[(Z)-octacos-17-enoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[2-octadecanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-dodecoxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-decanoyloxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-heptadecoxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-[(Z)-docos-13-enoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[3-decoxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[[2-dodecanoyloxy-3-[(Z)-nonadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
2-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C39H79NO7P+ (704.5593853999999)
N-hexadecanoylsphinganine-1-phosphocholine
A sphingomyelin 34:0 in which the N-acyl group and sphingoid base are specified as hexadecanoyl and sphinganine respectively.
ZyE(22:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
ChE(22:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PMe(36:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved