Exact Mass: 704.3196458
Exact Mass Matches: 704.3196458
Found 87 metabolites which its exact mass value is equals to given mass value 704.3196458
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
25-Acetyl-6,7-didehydrofevicordin F 3-glucoside
25-Acetyl-6,7-didehydrofevicordin F 3-glucoside is found in fruits. 25-Acetyl-6,7-didehydrofevicordin F 3-glucoside is a constituent of Cyclanthera pedata (achoccha)
PGP(a-13:0/i-12:0)
PGP(a-13:0/i-12:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(a-13:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-12:0/a-13:0)
PGP(i-12:0/a-13:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/a-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-12:0/i-13:0)
PGP(i-12:0/i-13:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-12:0/i-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
PGP(i-13:0/i-12:0)
PGP(i-13:0/i-12:0) is a phosphatidylglycerophosphate (PGP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site followed by another phosphate moiety. Phosphatidylglycerolphosphate is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerolphosphate increases during fetal development. Phosphatidylglycerolphosphate may be present in animal tissues merely as a precursor for cardiolipin synthesis. As is the case with diacylglycerols, phosphatidylglycerophosphates can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PGP(i-13:0/i-12:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. They are synthesized by the addition of glycerol 3-phosphate to a CDP-diacylglycerol. In turn, PGPs are dephosphorylated to phosphatidylglycerols (PGs). While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes.
2-hydroxythymol 3-O-(4-O-angeloyl-beta-D-fucopyranosyl)-(1->3)-(2,4-di-O-angeloyl)-beta-D-fucopyranoside
butyl 3-O-acetyl-2-O-butanoyl-3,4,4-tri(O-2-methylpropanoyl)neohesperidoside
2-hydroxythymol 3-O-(3-O-angeloyl-beta-D-fucopyranosyl)-(1->3)-(2,4-di-O-angeloyl)-beta-D-fucopyranoside
14-Hydroxy-3beta-(tetra-O-acetyl-beta-D-glucopyranosyloxy)-5beta,14beta-card-20(22)-enolid|14-hydroxy-3beta-(tetra-O-acetyl-beta-D-glucopyranosyloxy)-5beta,14beta-card-20(22)-enolide
(3beta,6beta,8beta,15alpha,16beta,22E,24R)--3-O-[2-O-Methyl-beta-D-xylopynoside],15-sulsate, Ergosta-4,22-diene-3,6,8,15,16,28-hexol
(2R,3R,4S,5R,7S,8R,13R,15R)-2,3,5,7,15-pentaacetoxy-8-angeloyloxy-9,14-dioxo-jatropha-6(17),11E-diene|jatrophene diterpene
cyclo{-(betaS)-Nalpha-(N,N-dimethyl-L-tryptophyl-L-prolyl)-beta-oxy-L-phenylalanyl-L-leucyl-psi[NH-CH=CH-(4,1-phenylene)]-}|hemsine C
(3beta,6beta,8beta,15alpha,16beta,22E,24R,25S)-3-O-[2-O-Methyl-beta-D-xylopynoside],15-sulsate,Ergosta-4,22-diene-3,6,8,15,16,26-hexol
12-Demethylvobtusine|Demethylvobtusin|ent-6beta,21;6beta,21-diepoxy-2,17-dihydroxy-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester|O-12-Demethyl-vobtusin|O-demethyl-vobtusine
C42H48N4O6 (704.3573667999999)
1alpha,2alpha,6beta-Triacetoxy-8alpha,13-diisobutanoyloxy-9beta-benzoyloxy-4beta-hydroxy-beta-dihydroagarofuran|2-methylpropanoic acid rel-[(3R,4R,5R,5aS,6R,7S,9S,9aS,10R)-6,7,10-tris(acetyloxy)-5-(benzoyloxy)octahydro-9-hydroxy-2,2,9-trimethyl-4-(2-methyl-1-oxopropoxy)-5aH-3,9a-methano-1-benzoxepin-5a-yl]methyl ester
9-O-[6-O-(5-O-syringoyl-beta-D-apiofuranosyl)-beta-D-glucopyranosyl]-(3S,5R,9R)-3,6,9-trihydroxymegastigmane|eryciboside K
Lys Trp Trp Trp
C39H44N8O5 (704.3434493999999)
Gln Trp Trp Trp
C38H40N8O6 (704.3070660000001)
Trp Lys Trp Trp
C39H44N8O5 (704.3434493999999)
Trp Gln Trp Trp
C38H40N8O6 (704.3070660000001)
Trp Trp Lys Trp
C39H44N8O5 (704.3434493999999)
Trp Trp Gln Trp
C38H40N8O6 (704.3070660000001)
Trp Trp Trp Lys
C39H44N8O5 (704.3434493999999)
Trp Trp Trp Gln
C38H40N8O6 (704.3070660000001)
25-Acetyl-6,7-didehydrofevicordin F 3-glucoside
Butyl 3-O-acetyl-2-O-butanoyl-4,6,4-tri-O-(2-methylpropanoyl)-neohesperidoside
1,4-bis(5-(4-diphenylamino)phenyl-1,3,4-oxadiazol-2-yl)benzene
Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)samarium(III)
C33H60O6Sm (704.3587069999999)
[[2-[2-[2-[2-[[5-[(3aS,4S,6aR)-Hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]ethoxy]-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenyl]methoxy]carbamic acid 1,1-dimethylethyl ester
C30H43F3N6O8S (704.2815034000001)
Mitiglinide calcium hydrate
C38H52CaN2O8 (704.3349382000001)
D007004 - Hypoglycemic Agents
[(3R,4R)-1-[[(3S,6Z,9S,12S,15S)-3-[(4S,6R)-2-amino-4-hydroxy-1,4,5,6-tetrahydropyrimidin-3-ium-6-yl]-6-[(carbamoylamino)methylidene]-9,12-bis(hydroxymethyl)-2,5,8,11,14-pentaoxo-1,4,7,10,13-pentazacyclohexadec-15-yl]amino]-6-azaniumyl-4-hydroxy-1-oxohexan-3-yl]azanium
C25H46N13O11+3 (704.3439586000001)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10S)-9-[[1,3-benzodioxol-5-ylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C34H57O13P (704.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
C34H57O13P (704.3536601999999)
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
(1r,2r,3r,5s,8r,9r,10r)-2-(acetyloxy)-9,10-bis(benzoyloxy)-8,12,15,15-tetramethyl-4-methylidene-13-oxotricyclo[9.3.1.0³,⁸]pentadec-11-en-5-yl benzoate
12-({11-hydroxy-4,7,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1(13),2(10),11-trien-12-yl}methyl)-4,6,15,18-tetramethyl-3,5,14,16-tetraoxapentacyclo[11.7.0.0²,¹⁰.0⁴,⁸.0¹⁵,¹⁹]icosa-1,10,12-trien-11-ol
4,5-dihydroxy-6-{[2-(2-hydroxy-6-isopropyl-3-methylphenoxy)-6-methyl-3,5-bis[(2-methylbut-2-enoyl)oxy]oxan-4-yl]oxy}-2-methyloxan-3-yl 2-methylbut-2-enoate
9-[4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-2-(2,3-dimethyloxiran-2-yl)-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione
36',37'-dimethyl (1's,12'r,13'e,30'r,36'r,37'r)-13'-ethylidene-3,8',26'-trimethyl-22'-oxa-8',15',26',33'-tetraazaspiro[oxirane-2,31'-undecacyclo[28.5.1.1¹²,¹⁸.0¹,²⁷.0²,²⁵.0⁴,²³.0⁵,²¹.0⁷,¹⁹.0⁹,¹⁵.0⁹,¹⁸.0²⁷,³³]heptatriacontane]-2',4'(23'),5'(21'),6',19',24'-hexaene-36',37'-dicarboxylate
C42H48N4O6 (704.3573667999999)