Exact Mass: 702.3767634000001
Exact Mass Matches: 702.3767634000001
Found 162 metabolites which its exact mass value is equals to given mass value 702.3767634000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(13:0/PGE2)
PA(13:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGE2), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGE2/13:0)
PA(PGE2/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(13:0/PGD2)
PA(13:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/PGD2), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGD2/13:0)
PA(PGD2/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PA(13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one tridecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/13:0)
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of tridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/PGE2)
PA(a-13:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGE2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGE2/a-13:0)
PA(PGE2/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/a-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/PGD2)
PA(a-13:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/PGD2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGD2/a-13:0)
PA(PGD2/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/a-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PA(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0)
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/a-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/PGE2)
PA(i-13:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGE2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGE2/i-13:0)
PA(PGE2/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/i-13:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/PGD2)
PA(i-13:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/PGD2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGD2/i-13:0)
PA(PGD2/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/i-13:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))
PA(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-13:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0)
PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-13:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
22-methoxy-1beta,2beta,3beta,4beta,5beta,7alpha-hexahydroxy-furost-25(27)-en-6-one-26-yl O-beta-D-glucopyranoside|tupistroside F
3-Suberoylarginine ester -(3beta,5beta,11alpha,14beta)-3,5,14-Trihydroxycard-20(22)-enolide
3-O-(2,4-Diacetyl-beta-D-xylopyranoside)--16,23:16,24-Diepoxycycloart-7-ene-3,15,25-triol
2-deoxy-vobtusine|2-Desoxyvobtusin|Deoxyvobtusin|deoxyvobtusine|dihydroanhydrovobtusine|ent-6beta,21;6beta,21-diepoxy-17-methoxy-2,3-didehydro-(7betaC4,3beta)-3,4-dihydro-2H-spiro[aspidospermidine-7,5-pyrido[1,2,3:1,2,3]aspidospermidine]-3-carboxylic acid methyl ester
C43H50N4O5 (702.3781009999999)
23-O-diacetyl-7(8)-en-shengmanol-3-O-alpha?L-arabinopyranoside
2-(4-{rel-(3aR,11bR,11cS)-10-[2-(beta-D-glucopyranosyloxy)ethyl]-2,3,3a,4,5,6,11b,11c-octahydro-1H-indolo[3,2,1-ij] [1,7]naphthyridin-1-yl}phenyl)ethyl beta-D-glucopyranoside|incargranine B
Arg Arg Trp Trp
C34H46N12O5 (702.3713945999999)
Arg Trp Arg Trp
C34H46N12O5 (702.3713945999999)
Arg Trp Trp Arg
C34H46N12O5 (702.3713945999999)
Trp Arg Arg Trp
C34H46N12O5 (702.3713945999999)
Trp Arg Trp Arg
C34H46N12O5 (702.3713945999999)
Trp Trp Arg Arg
C34H46N12O5 (702.3713945999999)
BA-delta5-3beta,7beta-diol,7betaGlcNAc,24T
1-(4-fluorophenyl)-3-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C37H46F4N4O5 (702.3404153999999)
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C34H55O13P (702.3380109999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C34H55O13P (702.3380109999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C34H55O13P (702.3380109999999)
[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2S,3S,6S)-6-[3-[(E)-dec-4-enoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E)-henicosa-9,11,13-trienoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoate
[(2S,3S,6S)-6-[3-decanoyloxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[(2S,3S,6S)-6-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
(2s)-n-[(2s,3s)-2-[(s)-hydroxy({[(1s)-1-[(3s)-8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl]-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl]-2-[(1-hydroxy-10-methylundecylidene)amino]butanediimidic acid
(1r,4s,6s,9e,13s,14r,17s)-13-hydroxy-17-[({[(1r,4s,6s,9e,13s,14r,17s)-13-hydroxy-4,9,13-trimethyl-16-oxo-5,15-dioxatricyclo[12.3.1.0⁴,⁶]octadec-9-en-17-yl]methyl}sulfanyl)methyl]-4,9,13-trimethyl-5,15-dioxatricyclo[12.3.1.0⁴,⁶]octadec-9-en-16-one
2-{[1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-5-hydroxy-6-methyl-4-oxooxan-3-yl acetate
13-hydroxy-17-{[({13-hydroxy-4,9,13-trimethyl-16-oxo-5,15-dioxatricyclo[12.3.1.0⁴,⁶]octadec-9-en-17-yl}methyl)sulfanyl]methyl}-4,9,13-trimethyl-5,15-dioxatricyclo[12.3.1.0⁴,⁶]octadec-9-en-16-one
{2-[(8,11-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-hexadecahydropicen-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxidanesulfonic acid
3-{[4-(but-2-en-1-yloxy)-2-hydroxyphenyl]methyl}-9-{[4-(buta-2,3-dien-1-yloxy)phenyl]methyl}-5,11-dihydroxy-1,7-dimethyl-6,12-bis(2-methylpropyl)-1,4,7,10-tetraazacyclododeca-4,10-diene-2,8-dione
(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-(2-{4-[(5s,9s,16s)-12-(2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)-1,8-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-10,12,14-trien-8-yl]phenyl}ethoxy)oxane-3,4,5-triol
2-amino-3-{[2-(9-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-7-hydroxy-2,8,12,16-tetramethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-14-en-10-yl)-1-hydroxyethyl]sulfanyl}propanoic acid
2-(hydroxymethyl)-6-(2-{4-[12-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)-1,8-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-10,12,14-trien-8-yl]phenyl}ethoxy)oxane-3,4,5-triol
16,23:16,24-diepoxycycloart-7-ene-3,15,25-triol; (3β,15α,23r,24r)-form,3-o-(2,4-diacetyl-beta-d-xylopyranoside)
{"Ingredient_id": "HBIN001755","Ingredient_name": "16,23:16,24-diepoxycycloart-7-ene-3,15,25-triol; (3\u03b2,15\u03b1,23r,24r)-form,3-o-(2,4-diacetyl-beta-d-xylopyranoside)","Alias": "NA","Ingredient_formula": "C39H58O11","Ingredient_Smile": "NA","Ingredient_weight": "702.87","OB_score": "NA","CAS_id": "150972-75-1","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9286","PubChem_id": "NA","DrugBank_id": "NA"}
[(2r,3r,4s,5s,6r)-2-{[(3s,4ar,6ar,6br,8ar,11s,12s,12as,12br,14ar,14br)-11-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-hexadecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxidanesulfonic acid
10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-hexyl-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid
18'-{[3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-4',5,6',12',17',17'-hexamethyl-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate
n-{2-[hydroxy({[1-(8-hydroxy-1-oxo-3,4-dihydro-2-benzopyran-3-yl)-3-methylbutyl]-c-hydroxycarbonimidoyl})methyl]-5-oxooxolan-3-yl}-2-[(1-hydroxy-10-methylundecylidene)amino]butanediimidic acid
2-amino-3-({2-[(14e)-9-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-7-hydroxy-2,8,12,16-tetramethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-14-en-10-yl]-1-hydroxyethyl}sulfanyl)propanoic acid
(1r,3br,4r,5as,7r,9s,9as,9br,11as)-4,9-bis(acetyloxy)-1-(7,7-dimethyl-5,6-dioxooxepan-3-yl)-3b,6,6,9a,11a-pentamethyl-2-methylidene-1h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate
(2s,3s,4s,5r,6r)-6-{[(1s,3as,3bs,5s,5as,7s,9as,11as)-1-[(2s,5r)-2-hydroxy-5,6-dimethyl-4-oxoheptan-2-yl]-9a,11a-dimethyl-5-(sulfooxy)-1h,2h,3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
C34H54O13S (702.3284954000001)
(2r)-2-amino-3-{[(1r)-2-[(1s,2s,3s,7s,8r,9s,10s,12r,14e,16r)-9-{[(2r,3r,4r,6s)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-3-ethyl-7-hydroxy-2,8,12,16-tetramethyl-5,13-dioxo-4,17-dioxabicyclo[14.1.0]heptadec-14-en-10-yl]-1-hydroxyethyl]sulfanyl}propanoic acid
methyl (11r,12'r,15s,24s,25r)-19-methoxy-8,15'-dioxa-4,8',17,19'-tetraazaspiro[heptacyclo[11.10.1.1¹,⁴.0⁷,¹¹.0¹⁷,²⁴.0¹⁸,²³.0¹¹,²⁵]pentacosane-15,17'-hexacyclo[10.9.1.0¹,⁹.0²,⁷.0¹²,¹⁶.0¹⁹,²²]docosane]-2',4',6',9',18,20,22-heptaene-10'-carboxylate
C43H50N4O5 (702.3781009999999)
(4,5-dihydroxy-2-{[11-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-hexadecahydropicen-3-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxidanesulfonic acid
methyl (1'r,11r,12'r,15r,16's,22'r,24s,25r)-19-methoxy-8,15'-dioxa-4,8',17,19'-tetraazaspiro[heptacyclo[11.10.1.1¹,⁴.0⁷,¹¹.0¹⁷,²⁴.0¹⁸,²³.0¹¹,²⁵]pentacosane-15,17'-hexacyclo[10.9.1.0¹,⁹.0²,⁷.0¹²,¹⁶.0¹⁹,²²]docosane]-2',4',6',9',18,20,22-heptaene-10'-carboxylate
C43H50N4O5 (702.3781009999999)
(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-hexyl-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid
(3s,6s,9s,12s)-3-({4-[(2z)-but-2-en-1-yloxy]-2-hydroxyphenyl}methyl)-9-{[4-(buta-2,3-dien-1-yloxy)phenyl]methyl}-5,11-dihydroxy-1,7-dimethyl-6,12-bis(2-methylpropyl)-1,4,7,10-tetraazacyclododeca-4,10-diene-2,8-dione
16-benzyl-14,18,24-trihydroxy-3-(2-hydroxypropan-2-yl)-13-isopropyl-4,20-dimethyl-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacos-17-ene-2,5,12,15,21-pentone
C33H50N8O9 (702.3700570000001)
(1r,1'r,2s,3'r,4'r,5r,5'r,6'r,10's,12's,13's,16'r,18's,21'r)-18'-{[(2s,3r,4s,5r)-3-(acetyloxy)-4,5-dihydroxyoxan-2-yl]oxy}-4',5,6',12',17',17'-hexamethyl-3,6,9'-trioxaspiro[bicyclo[3.1.0]hexane-2,8'-hexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan]-3'-yl acetate
[(2r,3r,4s,5s,6r)-2-{[(3s,4ar,6ar,6br,8s,8as,11s,12s,12as,12br,14ar,14br)-8,11-dihydroxy-4,4,6a,6b,8a,11,12,14b-octamethyl-hexadecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxidanesulfonic acid
(2r,3r,5s,6s)-2-{[(1r,2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-5-hydroxy-6-methyl-4-oxooxan-3-yl acetate
(1s,2r,3r,6z,8s,9s,10s,12s,16s)-12-hydroxy-2-{[(5-hydroxy-3,4-dimethoxy-6-methyloxan-2-yl)oxy]methyl}-9-[(3-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-3,8,10,12-tetramethyl-4,17-dioxabicyclo[14.1.0]heptadec-6-ene-5,13-dione
(2s,3s,4s,5r,6r)-6-{[(1s,3as,3bs,5s,5as,7s,9as,11as)-1-[(1r)-1-hydroxy-1-[(2r,3s)-3-[(2r)-3-methylbutan-2-yl]oxiran-2-yl]ethyl]-9a,11a-dimethyl-5-(sulfooxy)-1h,2h,3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
C34H54O13S (702.3284954000001)
(3s,6s,9s,12s)-3-({4-[(2e)-but-2-en-1-yloxy]-2-hydroxyphenyl}methyl)-9-{[4-(buta-2,3-dien-1-yloxy)phenyl]methyl}-5,11-dihydroxy-1,7-dimethyl-6,12-bis(2-methylpropyl)-1,4,7,10-tetraazacyclododeca-4,10-diene-2,8-dione
(3s,6r,16r,22r,24r)-16-benzyl-14,18,24-trihydroxy-3-(2-hydroxypropan-2-yl)-13-isopropyl-4,20-dimethyl-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacos-17-ene-2,5,12,15,21-pentone
C33H50N8O9 (702.3700570000001)