Exact Mass: 696.5176

Exact Mass Matches: 696.5176

Found 500 metabolites which its exact mass value is equals to given mass value 696.5176, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

2-Octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone

5-methoxy-2-methyl-3-(3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl)cyclohexa-2,5-diene-1,4-dione

C48H72O3 (696.5481)


   

1,2-Di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate

1-[(Phosphonooxy)methyl]ethane-1,2-diyl bis[(9Z,12Z)-octadeca-9,12-dienoate]

C39H69O8P (696.473)


1,2-Di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate is classified as a Natural Food Constituent (code WA) in the DFC Classified as a Natural Food Constituent (code WA) in the DFC

   

PA(14:0/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.473)


PA(14:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/20:3(5Z,8Z,11Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(16:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:2(9Z,12Z)/18:2(9Z,12Z))

[(2R)-2,3-bis[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:2(9Z,12Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/18:1(11Z))

[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/18:1(9Z))

[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/18:1(11Z))

[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:3(9Z,12Z,15Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/18:1(9Z))

[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:3(9Z,12Z,15Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/18:0)

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.473)


PA(18:4(6Z,9Z,12Z,15Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(5Z,8Z,11Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/16:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(8Z,11Z,14Z,17Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/14:0)

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.473)


PA(22:4(7Z,10Z,13Z,16Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/14:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/20:3(8Z,11Z,14Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(16:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(8Z,11Z,14Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/16:1(9Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 8Z,11Z,14Z,17Z-eicosapentaenoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.473)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

DG(17:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(17:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/17:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl heptadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(17:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(17:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/17:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(17:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(17:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/17:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl heptadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(17:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(17:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/17:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl heptadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropyl octadecanoic acid

C41H76O8 (696.554)


DG(18:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/18:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropan-2-yl octadecanoic acid

C41H76O8 (696.554)


DG(PGF1alpha/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/0:0/PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl octadecanoic acid

C41H76O8 (696.554)


DG(18:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/0:0/18:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl octadecanoic acid

C41H76O8 (696.554)


DG(PGF1alpha/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(a-17:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/a-17:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(a-17:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/a-17:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(a-17:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/a-17:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(a-17:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(a-17:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/a-17:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 14-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/6 keto-PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(i-17:0/6 keto-PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/6 keto-PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/i-17:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-hydroxypropan-2-yl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(6 keto-PGF1alpha/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/0:0/6 keto-PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(i-17:0/0:0/6 keto-PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(6 keto-PGF1alpha/0:0/i-17:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(6 keto-PGF1alpha/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/TXB2/0:0)

(2S)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(i-17:0/TXB2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/TXB2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/i-17:0/0:0)

(2S)-1-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-hydroxypropan-2-yl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(TXB2/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-17:0/0:0/TXB2)

(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(i-17:0/0:0/TXB2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(TXB2/0:0/i-17:0)

(2S)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-hydroxypropyl 15-methylhexadecanoic acid

C40H72O9 (696.5176)


DG(TXB2/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/PGF1alpha/0:0)

(2S)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropyl 16-methylheptadecanoic acid

C41H76O8 (696.554)


DG(i-18:0/PGF1alpha/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/PGF1alpha/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/i-18:0/0:0)

(2S)-1-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-hydroxypropan-2-yl 16-methylheptadecanoic acid

C41H76O8 (696.554)


DG(PGF1alpha/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGF1alpha/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/0:0/PGF1alpha)

(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl 16-methylheptadecanoic acid

C41H76O8 (696.554)


DG(i-18:0/0:0/PGF1alpha) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGF1alpha/0:0/i-18:0)

(2S)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-hydroxypropyl 16-methylheptadecanoic acid

C41H76O8 (696.554)


DG(PGF1alpha/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

Petroformynic acid B

(+)-Petroformynic acid B

C47H68O4 (696.5117)


   

1,2-dilinoleoyl-PA

9,12-Octadecadienoic acid (Z,Z)-, 1-[(phosphonooxy)methyl]-1,2-ethanediyl ester

C39H69O8P (696.473)


   

PA(16:0/20:4)

5,8,11,14-Eicosatetraenoic acid, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, [R-(all-Z)]-

C39H69O8P (696.473)


   

PA(14:0/22:4(7Z,10Z,13Z,16Z))

1-tetradecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(16:1(9Z)/20:3(8Z,11Z,14Z))

1-(9Z-hexadecenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-octadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:3(6Z,9Z,12Z)/18:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:4(6Z,9Z,12Z,15Z)/18:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-octadecanoyl-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(20:3(8Z,11Z,14Z)/16:1(9Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(22:4(7Z,10Z,13Z,16Z)/14:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-tetradecanoyl-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)/16:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-hexadecanoyl-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:3(9Z,12Z,15Z)/18:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-octadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:0/18:4(6Z,9Z,12Z,15Z))

1-octadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H69O8P (696.473)


   

PA(18:2(9Z,12Z)/18:2(9Z,12Z))

1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate

C39H69O8P (696.473)


   

Linolein, 1,2-di-, dihydrogen phosphate

{2,3-bis[(9E,12E)-octadeca-9,12-dienoyloxy]propoxy}phosphonic acid

C39H69O8P (696.473)


   

FA 47:13;O2

34S,45S-dihydroxy-heptatetraconta-4Z,20Z,26Z,30E,43E-pentaen-2,32,35,46-tetraynoic acid

C47H68O4 (696.5117)


   

PA 36:4

5,8,11,14-Eicosatetraenoic acid, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, [R-(all-Z)]-

C39H69O8P (696.473)


   

4-N-[4-[4-(diethylamino)-N-[4-(diethylamino)phenyl]anilino]phenyl]-4-N-[4-(diethylamino)phenyl]-1-N,1-N-diethylbenzene-1,4-diamine

4-N-[4-[4-(diethylamino)-N-[4-(diethylamino)phenyl]anilino]phenyl]-4-N-[4-(diethylamino)phenyl]-1-N,1-N-diethylbenzene-1,4-diamine

C46H60N6 (696.4879)


   

2,2-bis[[(1-oxoisononyl)oxy]methyl]-1,3-propanediyl diisononanoate

2,2-bis[[(1-oxoisononyl)oxy]methyl]-1,3-propanediyl diisononanoate

C41H76O8 (696.554)


   

L-α-phosphatidic acid

L-α-phosphatidic acid

C39H69O8P (696.473)


   

2,2-bis[[(1-oxononyl)oxy]methyl]propane-1,3-diyl dinonan-1-oate

2,2-bis[[(1-oxononyl)oxy]methyl]propane-1,3-diyl dinonan-1-oate

C41H76O8 (696.554)


   

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P-2 (696.473)


   

1-18:0-2-18:3-Phosphatidic acid

1-18:0-2-18:3-Phosphatidic acid

C39H69O8P-2 (696.473)


   

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C39H69O8P (696.473)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C39H69O8P (696.473)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

C39H69O8P (696.473)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

C39H69O8P (696.473)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C39H69O8P (696.473)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C39H69O8P (696.473)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C39H69O8P (696.473)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

C39H69O8P (696.473)


   

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C39H69O8P (696.473)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

C39H69O8P (696.473)


   

DG(18:0/PGF1alpha/0:0)

DG(18:0/PGF1alpha/0:0)

C41H76O8 (696.554)


   

DG(PGF1alpha/18:0/0:0)

DG(PGF1alpha/18:0/0:0)

C41H76O8 (696.554)


   

DG(18:0/0:0/PGF1alpha)

DG(18:0/0:0/PGF1alpha)

C41H76O8 (696.554)


   

DG(PGF1alpha/0:0/18:0)

DG(PGF1alpha/0:0/18:0)

C41H76O8 (696.554)


   

DG(i-18:0/PGF1alpha/0:0)

DG(i-18:0/PGF1alpha/0:0)

C41H76O8 (696.554)


   

DG(PGF1alpha/i-18:0/0:0)

DG(PGF1alpha/i-18:0/0:0)

C41H76O8 (696.554)


   

DG(i-18:0/0:0/PGF1alpha)

DG(i-18:0/0:0/PGF1alpha)

C41H76O8 (696.554)


   

DG(PGF1alpha/0:0/i-18:0)

DG(PGF1alpha/0:0/i-18:0)

C41H76O8 (696.554)


   

DG(17:0/6 keto-PGF1alpha/0:0)

DG(17:0/6 keto-PGF1alpha/0:0)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/17:0/0:0)

DG(6 keto-PGF1alpha/17:0/0:0)

C40H72O9 (696.5176)


   

DG(17:0/0:0/6 keto-PGF1alpha)

DG(17:0/0:0/6 keto-PGF1alpha)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/0:0/17:0)

DG(6 keto-PGF1alpha/0:0/17:0)

C40H72O9 (696.5176)


   

DG(17:0/TXB2/0:0)

DG(17:0/TXB2/0:0)

C40H72O9 (696.5176)


   

DG(TXB2/17:0/0:0)

DG(TXB2/17:0/0:0)

C40H72O9 (696.5176)


   

DG(17:0/0:0/TXB2)

DG(17:0/0:0/TXB2)

C40H72O9 (696.5176)


   

DG(TXB2/0:0/17:0)

DG(TXB2/0:0/17:0)

C40H72O9 (696.5176)


   

DG(a-17:0/TXB2/0:0)

DG(a-17:0/TXB2/0:0)

C40H72O9 (696.5176)


   

DG(TXB2/a-17:0/0:0)

DG(TXB2/a-17:0/0:0)

C40H72O9 (696.5176)


   

DG(a-17:0/0:0/TXB2)

DG(a-17:0/0:0/TXB2)

C40H72O9 (696.5176)


   

DG(TXB2/0:0/a-17:0)

DG(TXB2/0:0/a-17:0)

C40H72O9 (696.5176)


   

DG(i-17:0/TXB2/0:0)

DG(i-17:0/TXB2/0:0)

C40H72O9 (696.5176)


   

DG(TXB2/i-17:0/0:0)

DG(TXB2/i-17:0/0:0)

C40H72O9 (696.5176)


   

DG(i-17:0/0:0/TXB2)

DG(i-17:0/0:0/TXB2)

C40H72O9 (696.5176)


   

DG(TXB2/0:0/i-17:0)

DG(TXB2/0:0/i-17:0)

C40H72O9 (696.5176)


   

DG(a-17:0/6 keto-PGF1alpha/0:0)

DG(a-17:0/6 keto-PGF1alpha/0:0)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/a-17:0/0:0)

DG(6 keto-PGF1alpha/a-17:0/0:0)

C40H72O9 (696.5176)


   

DG(a-17:0/0:0/6 keto-PGF1alpha)

DG(a-17:0/0:0/6 keto-PGF1alpha)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/0:0/a-17:0)

DG(6 keto-PGF1alpha/0:0/a-17:0)

C40H72O9 (696.5176)


   

DG(i-17:0/6 keto-PGF1alpha/0:0)

DG(i-17:0/6 keto-PGF1alpha/0:0)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/i-17:0/0:0)

DG(6 keto-PGF1alpha/i-17:0/0:0)

C40H72O9 (696.5176)


   

DG(i-17:0/0:0/6 keto-PGF1alpha)

DG(i-17:0/0:0/6 keto-PGF1alpha)

C40H72O9 (696.5176)


   

DG(6 keto-PGF1alpha/0:0/i-17:0)

DG(6 keto-PGF1alpha/0:0/i-17:0)

C40H72O9 (696.5176)


   

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P-2 (696.473)


   

1-((Phosphonooxy)methyl)ethane-1,2-diyl bis((9Z,12Z)-octadeca-9,12-dienoate)

1-((Phosphonooxy)methyl)ethane-1,2-diyl bis((9Z,12Z)-octadeca-9,12-dienoate)

C39H69O8P (696.473)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C39H69O8P (696.473)


   

NAOrn 16:4/22:2

NAOrn 16:4/22:2

C43H72N2O5 (696.5441)


   

NAOrn 18:5/20:1

NAOrn 18:5/20:1

C43H72N2O5 (696.5441)


   

NAOrn 22:3/16:3

NAOrn 22:3/16:3

C43H72N2O5 (696.5441)


   

NAOrn 18:4/20:2

NAOrn 18:4/20:2

C43H72N2O5 (696.5441)


   

NAOrn 24:5/14:1

NAOrn 24:5/14:1

C43H72N2O5 (696.5441)


   

NAOrn 22:6/16:0

NAOrn 22:6/16:0

C43H72N2O5 (696.5441)


   

NAOrn 24:6/14:0

NAOrn 24:6/14:0

C43H72N2O5 (696.5441)


   

NAOrn 22:4/16:2

NAOrn 22:4/16:2

C43H72N2O5 (696.5441)


   

NAOrn 18:3/20:3

NAOrn 18:3/20:3

C43H72N2O5 (696.5441)


   

NAOrn 16:3/22:3

NAOrn 16:3/22:3

C43H72N2O5 (696.5441)


   

NAOrn 18:2/20:4

NAOrn 18:2/20:4

C43H72N2O5 (696.5441)


   

NAOrn 20:3/18:3

NAOrn 20:3/18:3

C43H72N2O5 (696.5441)


   

NAOrn 20:4/18:2

NAOrn 20:4/18:2

C43H72N2O5 (696.5441)


   

NAOrn 16:1/22:5

NAOrn 16:1/22:5

C43H72N2O5 (696.5441)


   

NAOrn 20:5/18:1

NAOrn 20:5/18:1

C43H72N2O5 (696.5441)


   

NAOrn 22:5/16:1

NAOrn 22:5/16:1

C43H72N2O5 (696.5441)


   

NAOrn 26:6/12:0

NAOrn 26:6/12:0

C43H72N2O5 (696.5441)


   

NAOrn 16:2/22:4

NAOrn 16:2/22:4

C43H72N2O5 (696.5441)


   

Mgdg O-26:3_5:0

Mgdg O-26:3_5:0

C40H72O9 (696.5176)


   

Mgdg O-24:3_7:0

Mgdg O-24:3_7:0

C40H72O9 (696.5176)


   

Mgdg O-22:3_9:0

Mgdg O-22:3_9:0

C40H72O9 (696.5176)


   

Mgdg O-9:0_22:3

Mgdg O-9:0_22:3

C40H72O9 (696.5176)


   

Mgdg O-28:3_3:0

Mgdg O-28:3_3:0

C40H72O9 (696.5176)


   

Mgdg O-13:0_18:3

Mgdg O-13:0_18:3

C40H72O9 (696.5176)


   

Mgdg O-15:1_16:2

Mgdg O-15:1_16:2

C40H72O9 (696.5176)


   

Mgdg O-18:2_13:1

Mgdg O-18:2_13:1

C40H72O9 (696.5176)


   

Mgdg O-14:1_17:2

Mgdg O-14:1_17:2

C40H72O9 (696.5176)


   

Mgdg O-16:2_15:1

Mgdg O-16:2_15:1

C40H72O9 (696.5176)


   

Mgdg O-15:0_16:3

Mgdg O-15:0_16:3

C40H72O9 (696.5176)


   

Mgdg O-17:2_14:1

Mgdg O-17:2_14:1

C40H72O9 (696.5176)


   

Mgdg O-13:1_18:2

Mgdg O-13:1_18:2

C40H72O9 (696.5176)


   

Mgdg O-18:3_13:0

Mgdg O-18:3_13:0

C40H72O9 (696.5176)


   

Mgdg O-16:3_15:0

Mgdg O-16:3_15:0

C40H72O9 (696.5176)


   

Mgdg O-11:0_20:3

Mgdg O-11:0_20:3

C40H72O9 (696.5176)


   

Mgdg O-20:3_11:0

Mgdg O-20:3_11:0

C40H72O9 (696.5176)


   

PE-Cer 15:2;2O/22:2

PE-Cer 15:2;2O/22:2

C39H73N2O6P (696.5206)


   

PE-Cer 17:0;2O/20:4

PE-Cer 17:0;2O/20:4

C39H73N2O6P (696.5206)


   

PE-Cer 16:3;2O/21:1

PE-Cer 16:3;2O/21:1

C39H73N2O6P (696.5206)


   

PE-Cer 17:3;2O/20:1

PE-Cer 17:3;2O/20:1

C39H73N2O6P (696.5206)


   

PE-Cer 20:3;2O/17:1

PE-Cer 20:3;2O/17:1

C39H73N2O6P (696.5206)


   

PE-Cer 23:3;2O/14:1

PE-Cer 23:3;2O/14:1

C39H73N2O6P (696.5206)


   

PE-Cer 21:0;2O/16:4

PE-Cer 21:0;2O/16:4

C39H73N2O6P (696.5206)


   

PE-Cer 15:0;2O/22:4

PE-Cer 15:0;2O/22:4

C39H73N2O6P (696.5206)


   

PE-Cer 21:2;2O/16:2

PE-Cer 21:2;2O/16:2

C39H73N2O6P (696.5206)


   

PE-Cer 21:1;2O/16:3

PE-Cer 21:1;2O/16:3

C39H73N2O6P (696.5206)


   

PE-Cer 13:2;2O/24:2

PE-Cer 13:2;2O/24:2

C39H73N2O6P (696.5206)


   

PE-Cer 22:3;2O/15:1

PE-Cer 22:3;2O/15:1

C39H73N2O6P (696.5206)


   

PE-Cer 17:2;2O/20:2

PE-Cer 17:2;2O/20:2

C39H73N2O6P (696.5206)


   

PE-Cer 24:3;2O/13:1

PE-Cer 24:3;2O/13:1

C39H73N2O6P (696.5206)


   

PE-Cer 18:2;2O/19:2

PE-Cer 18:2;2O/19:2

C39H73N2O6P (696.5206)


   

PE-Cer 18:3;2O/19:1

PE-Cer 18:3;2O/19:1

C39H73N2O6P (696.5206)


   

PE-Cer 19:3;2O/18:1

PE-Cer 19:3;2O/18:1

C39H73N2O6P (696.5206)


   

PE-Cer 13:0;2O/24:4

PE-Cer 13:0;2O/24:4

C39H73N2O6P (696.5206)


   

PE-Cer 19:1;2O/18:3

PE-Cer 19:1;2O/18:3

C39H73N2O6P (696.5206)


   

PE-Cer 16:2;2O/21:2

PE-Cer 16:2;2O/21:2

C39H73N2O6P (696.5206)


   

PE-Cer 15:3;2O/22:1

PE-Cer 15:3;2O/22:1

C39H73N2O6P (696.5206)


   

PE-Cer 19:0;2O/18:4

PE-Cer 19:0;2O/18:4

C39H73N2O6P (696.5206)


   

PE-Cer 19:2;2O/18:2

PE-Cer 19:2;2O/18:2

C39H73N2O6P (696.5206)


   

PE-Cer 21:3;2O/16:1

PE-Cer 21:3;2O/16:1

C39H73N2O6P (696.5206)


   

PE-Cer 20:2;2O/17:2

PE-Cer 20:2;2O/17:2

C39H73N2O6P (696.5206)


   

PE-Cer 15:1;2O/22:3

PE-Cer 15:1;2O/22:3

C39H73N2O6P (696.5206)


   

PE-Cer 13:1;2O/24:3

PE-Cer 13:1;2O/24:3

C39H73N2O6P (696.5206)


   

PE-Cer 17:1;2O/20:3

PE-Cer 17:1;2O/20:3

C39H73N2O6P (696.5206)


   

PE-Cer 14:3;2O/22:2;O

PE-Cer 14:3;2O/22:2;O

C38H69N2O7P (696.4842)


   

PE-Cer 16:3;2O/20:2;O

PE-Cer 16:3;2O/20:2;O

C38H69N2O7P (696.4842)


   

PE-Cer 18:3;2O/18:2;O

PE-Cer 18:3;2O/18:2;O

C38H69N2O7P (696.4842)


   

PE-Cer 20:3;2O/16:2;O

PE-Cer 20:3;2O/16:2;O

C38H69N2O7P (696.4842)


   

[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyoctadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradecyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

(2-nonanoyloxy-3-octanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

(2-nonanoyloxy-3-octanoyloxypropyl) (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C44H72O6 (696.5329)


   

[3-nonanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-nonanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H72O6 (696.5329)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-nonanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-nonanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C44H72O6 (696.5329)


   

(2-decanoyloxy-3-nonanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(2-decanoyloxy-3-nonanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C44H72O6 (696.5329)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (9Z,12Z)-heptadeca-9,12-dienoate

C44H72O6 (696.5329)


   

[3-octanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-octanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H72O6 (696.5329)


   

[3-octanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-octanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C44H72O6 (696.5329)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C44H72O6 (696.5329)


   

(3-octanoyloxy-2-undecanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

(3-octanoyloxy-2-undecanoyloxypropyl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C44H72O6 (696.5329)


   

[3-decanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-decanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C44H72O6 (696.5329)


   

PEtOH 14:0_20:4

PEtOH 14:0_20:4

C39H69O8P (696.473)


   

PEtOH 17:2_17:2

PEtOH 17:2_17:2

C39H69O8P (696.473)


   

PEtOH 16:1_18:3

PEtOH 16:1_18:3

C39H69O8P (696.473)


   

PMeOH 15:1_20:3

PMeOH 15:1_20:3

C39H69O8P (696.473)


   

PEtOH 18:1_16:3

PEtOH 18:1_16:3

C39H69O8P (696.473)


   

PEtOH 16:0_18:4

PEtOH 16:0_18:4

C39H69O8P (696.473)


   

PMeOH 13:0_22:4

PMeOH 13:0_22:4

C39H69O8P (696.473)


   

PMeOH 15:0_20:4

PMeOH 15:0_20:4

C39H69O8P (696.473)


   

PMeOH 19:0_16:4

PMeOH 19:0_16:4

C39H69O8P (696.473)


   

PEtOH 12:0_22:4

PEtOH 12:0_22:4

C39H69O8P (696.473)


   

PEtOH 18:0_16:4

PEtOH 18:0_16:4

C39H69O8P (696.473)


   

PEtOH 16:2_18:2

PEtOH 16:2_18:2

C39H69O8P (696.473)


   

PMeOH 19:1_16:3

PMeOH 19:1_16:3

C39H69O8P (696.473)


   

PMeOH 17:0_18:4

PMeOH 17:0_18:4

C39H69O8P (696.473)


   

PMeOH 17:1_18:3

PMeOH 17:1_18:3

C39H69O8P (696.473)


   

PMeOH 13:1_22:3

PMeOH 13:1_22:3

C39H69O8P (696.473)


   

PMeOH 17:2_18:2

PMeOH 17:2_18:2

C39H69O8P (696.473)


   

PEtOH 14:1_20:3

PEtOH 14:1_20:3

C39H69O8P (696.473)


   

PMeOH 16:2_19:2

PMeOH 16:2_19:2

C39H69O8P (696.473)


   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H68O10 (696.4812)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H68O10 (696.4812)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C39H68O10 (696.4812)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H68O10 (696.4812)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C39H68O10 (696.4812)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812)


   

[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]icosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]icosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

C39H69O8P (696.473)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H69O8P (696.473)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.473)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H69O8P (696.473)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C39H69O8P (696.473)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H69O8P (696.473)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C39H69O8P (696.473)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

C39H69O8P (696.473)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C39H69O8P (696.473)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

C39H69O8P (696.473)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H69O8P (696.473)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-tridecanoyloxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C44H72O6 (696.5329)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

C44H72O6 (696.5329)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tetradecanoyloxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H72O6 (696.5329)


   

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z)-tetradeca-5,8,11-trienoate

[2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z)-tetradeca-5,8,11-trienoate

C44H72O6 (696.5329)


   

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

[2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (11Z,14Z)-heptadeca-11,14-dienoate

C44H72O6 (696.5329)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-pentadec-9-enoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (Z)-pentadec-9-enoate

C44H72O6 (696.5329)


   

[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxydocosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxydocosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[2-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(Z)-dodec-5-enoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C44H72O6 (696.5329)


   

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-dodecanoyloxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C44H72O6 (696.5329)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (Z)-pentadec-9-enoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (Z)-pentadec-9-enoate

C44H72O6 (696.5329)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,12Z)-octadeca-10,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(Z)-octadec-11-enoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[1-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropan-2-yl] (7Z,9Z)-tetradeca-7,9-dienoate

[1-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropan-2-yl] (7Z,9Z)-tetradeca-7,9-dienoate

C44H72O6 (696.5329)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

C44H72O6 (696.5329)


   

[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (Z)-heptadec-7-enoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (Z)-heptadec-7-enoate

C44H72O6 (696.5329)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl heptadecanoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl heptadecanoate

C44H72O6 (696.5329)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] pentadecanoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] pentadecanoate

C44H72O6 (696.5329)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

C44H72O6 (696.5329)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C44H72O6 (696.5329)


   

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (11Z,14Z)-heptadeca-11,14-dienoate

2,3-bis[[(6Z,9Z)-dodeca-6,9-dienoyl]oxy]propyl (11Z,14Z)-heptadeca-11,14-dienoate

C44H72O6 (696.5329)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H72O6 (696.5329)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H72O6 (696.5329)


   

[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C44H72O6 (696.5329)


   

[3-dodecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-dodecanoyloxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C44H72O6 (696.5329)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C44H72O6 (696.5329)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (4Z,7Z)-hexadeca-4,7-dienoate

C44H72O6 (696.5329)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z)-hexadeca-9,11,13-trienoate

C44H72O6 (696.5329)


   

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-dodecanoyloxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H72O6 (696.5329)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

C39H69O8P (696.473)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C39H69O8P (696.473)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H69O8P (696.473)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C39H69O8P (696.473)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C39H69O8P (696.473)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C39H69O8P (696.473)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C39H69O8P (696.473)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H68O10 (696.4812)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C39H69O8P (696.473)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.473)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C39H69O8P (696.473)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.473)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C39H69O8P (696.473)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C39H69O8P (696.473)


   

[(2S,3R,4E,6E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]hexadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S,3R,4E,6E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]hexadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.473)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O8P (696.473)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.473)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C39H69O8P (696.473)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C39H69O8P (696.473)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C39H69O8P (696.473)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S,3R,4E,8E)-3-hydroxy-2-[[(9E,12E)-octadeca-9,12-dienoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H73N2O6P (696.5206)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.473)


   

[1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C39H68O10 (696.4812)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C39H69O8P (696.473)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C39H69O8P (696.473)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C39H69O8P (696.473)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.473)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H68O10 (696.4812)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C39H69O8P (696.473)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.473)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.473)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C39H69O8P (696.473)


   

[3-[2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

[3-[2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C39H69O8P (696.473)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C39H69O8P (696.473)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C39H69O8P (696.473)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C39H69O8P (696.473)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H68O10 (696.4812)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C39H68O10 (696.4812)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H68O10 (696.4812)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H68O10 (696.4812)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H68O10 (696.4812)


   

[3-[2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

[3-[2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

C42H66NO7+ (696.4839)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[carboxy-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-tetradecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(Z)-heptadec-9-enoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

C42H66NO7+ (696.4839)


   

2-[carboxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-undecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[3-decanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-tridecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-nonanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[3-dodecanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-dodecanoyloxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[2,3-bis[[(Z)-pentadec-9-enoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

2-[2,3-bis[[(Z)-pentadec-9-enoyl]oxy]propoxy-carboxymethoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[carboxy-[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H74NO8+ (696.5414)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[[2-heptanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-heptanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4968)


   

3-Methyl-6-methoxy-2-octaprenyl-1,4-benzoquinone

3-Methyl-6-methoxy-2-octaprenyl-1,4-benzoquinone

C48H72O3 (696.5481)


   

SM(34:4)

SM(d14:0_20:4)

C39H73N2O6P (696.5206)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(30:3)

MGDG(16:0_14:3)

C39H68O10 (696.4812)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(35:4)

BisMePA(18:3(1)_17:1)

C40H73O7P (696.5094)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(36:4)

PMe(18:2(1)_18:2)

C40H73O7P (696.5094)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   

FAHFA 21:5/O-26:7

FAHFA 21:5/O-26:7

C47H68O4 (696.5117)


   

FAHFA 21:6/O-26:6

FAHFA 21:6/O-26:6

C47H68O4 (696.5117)


   

FAHFA 21:7/O-26:5

FAHFA 21:7/O-26:5

C47H68O4 (696.5117)


   

FAHFA 22:5/O-25:7

FAHFA 22:5/O-25:7

C47H68O4 (696.5117)


   

FAHFA 22:6/O-25:6

FAHFA 22:6/O-25:6

C47H68O4 (696.5117)


   

FAHFA 22:7/O-25:5

FAHFA 22:7/O-25:5

C47H68O4 (696.5117)


   

FAHFA 23:5/O-24:7

FAHFA 23:5/O-24:7

C47H68O4 (696.5117)


   

FAHFA 23:6/O-24:6

FAHFA 23:6/O-24:6

C47H68O4 (696.5117)


   

FAHFA 23:7/O-24:5

FAHFA 23:7/O-24:5

C47H68O4 (696.5117)


   

FAHFA 24:5/O-23:7

FAHFA 24:5/O-23:7

C47H68O4 (696.5117)


   

FAHFA 24:6/O-23:6

FAHFA 24:6/O-23:6

C47H68O4 (696.5117)


   

FAHFA 24:7/O-23:5

FAHFA 24:7/O-23:5

C47H68O4 (696.5117)


   

FAHFA 25:5/O-22:7

FAHFA 25:5/O-22:7

C47H68O4 (696.5117)


   

FAHFA 25:6/O-22:6

FAHFA 25:6/O-22:6

C47H68O4 (696.5117)


   

FAHFA 25:7/O-22:5

FAHFA 25:7/O-22:5

C47H68O4 (696.5117)


   

FAHFA 26:5/O-21:7

FAHFA 26:5/O-21:7

C47H68O4 (696.5117)


   

FAHFA 26:6/O-21:6

FAHFA 26:6/O-21:6

C47H68O4 (696.5117)


   

FAHFA 26:7/O-21:5

FAHFA 26:7/O-21:5

C47H68O4 (696.5117)


   

MGDG 10:0_20:3

MGDG 10:0_20:3

C39H68O10 (696.4812)


   

MGDG 12:0_18:3

MGDG 12:0_18:3

C39H68O10 (696.4812)


   
   

MGDG O-30:4;O

MGDG O-30:4;O

C39H68O10 (696.4812)


   

MGDG O-31:3

MGDG O-31:3

C40H72O9 (696.5176)


   
   
   

PA O-20:2/17:2

PA O-20:2/17:2

C40H73O7P (696.5094)


   
   

PA P-20:1/17:2

PA P-20:1/17:2

C40H73O7P (696.5094)


   

PA P-20:1/17:2 or PA O-20:2/17:2

PA P-20:1/17:2 or PA O-20:2/17:2

C40H73O7P (696.5094)


   
   

PA P-37:3 or PA O-37:4

PA P-37:3 or PA O-37:4

C40H73O7P (696.5094)


   

CerPE 15:0;O2/22:4

CerPE 15:0;O2/22:4

C39H73N2O6P (696.5206)


   

CerPE 15:2;O2/22:2

CerPE 15:2;O2/22:2

C39H73N2O6P (696.5206)


   

CerPE 17:0;O2/20:4

CerPE 17:0;O2/20:4

C39H73N2O6P (696.5206)


   

CerPE 17:1;O2/20:3

CerPE 17:1;O2/20:3

C39H73N2O6P (696.5206)


   

CerPE 17:2;O2/20:2

CerPE 17:2;O2/20:2

C39H73N2O6P (696.5206)


   

CerPE 19:0;O2/18:4

CerPE 19:0;O2/18:4

C39H73N2O6P (696.5206)


   

CerPE 19:1;O2/18:3

CerPE 19:1;O2/18:3

C39H73N2O6P (696.5206)


   

CerPE 19:2;O2/18:2

CerPE 19:2;O2/18:2

C39H73N2O6P (696.5206)


   

CerPE 20:2;O2/17:2

CerPE 20:2;O2/17:2

C39H73N2O6P (696.5206)


   
   
   
   
   
   
   
   
   
   
   
   

4-hydroxy-3-methyl-5-[(2e,6e,10z,14r)-11,14,15-trihydroxy-3,7,15-trimethylhexadeca-2,6,10-trien-1-yl]phenyl (9z)-octadec-9-enoate

4-hydroxy-3-methyl-5-[(2e,6e,10z,14r)-11,14,15-trihydroxy-3,7,15-trimethylhexadeca-2,6,10-trien-1-yl]phenyl (9z)-octadec-9-enoate

C44H72O6 (696.5329)