Exact Mass: 696.4577254

Exact Mass Matches: 696.4577254

Found 500 metabolites which its exact mass value is equals to given mass value 696.4577254, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

DB-084088

(5-methyl-2-methylidenehexyl) (Z,2S)-2-hydroxy-6-[(1S,4Z,6E,9R,11R,12S,13S,14E,16Z,19E,21R,23R,24R)-11-hydroxy-24-(hydroxymethyl)-12,15,24-trimethyl-3-oxo-2,22,26-trioxatricyclo[19.3.1.19,13]hexacosa-4,6,14,16,19-pentaen-23-yl]hex-4-enoate

C41H60O9 (696.423711)


   

Glucosyl passiflorate

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 15-{1-[4,5-dihydroxy-4-(propan-2-yl)oxolan-2-yl]ethyl}-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C37H60O12 (696.408456)


Glucosyl passiflorate is found in fruits. Glucosyl passiflorate is a constituent of Passiflora edulis (passion fruit). Constituent of Passiflora edulis (passion fruit). Glucosyl passiflorate is found in fruits.

   

1,2-Di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate

1-[(Phosphonooxy)methyl]ethane-1,2-diyl bis[(9Z,12Z)-octadeca-9,12-dienoate]

C39H69O8P (696.4729804)


1,2-Di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate is classified as a Natural Food Constituent (code WA) in the DFC Classified as a Natural Food Constituent (code WA) in the DFC

   

Momordicoside E

2-(1,6,6,11,15-pentamethyl-5-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl)propanal

C37H60O12 (696.408456)


Momordicoside E is found in bitter gourd. Momordicoside E is a constituent of Momordica charantia (bitter melon) Constituent of Momordica charantia (bitter melon). Momordicoside E is found in bitter gourd and fruits.

   

PA(14:0/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(14:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(16:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/20:3(5Z,8Z,11Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(16:1(9Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:1(11Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(11Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:1(11Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(11Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:1(9Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:2(9Z,12Z)/18:2(9Z,12Z))

[(2R)-2,3-bis[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:2(9Z,12Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/18:2(9Z,12Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/18:1(11Z))

[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:3(6Z,9Z,12Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:1(11Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/18:1(9Z))

[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:3(6Z,9Z,12Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/18:1(11Z))

[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:3(9Z,12Z,15Z)/18:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:1(11Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/18:1(9Z))

[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:3(9Z,12Z,15Z)/18:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of oleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/18:0)

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(18:4(6Z,9Z,12Z,15Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(5Z,8Z,11Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/16:1(9Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/16:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/16:0)

[(2R)-2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(8Z,11Z,14Z,17Z)/16:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/16:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/14:0)

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(22:4(7Z,10Z,13Z,16Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/14:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:1(9Z)/20:3(8Z,11Z,14Z))

[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(16:1(9Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:1(9Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/16:1(9Z))

[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(8Z,11Z,14Z)/16:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/16:1(9Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(16:0/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(16:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(16:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 8Z,11Z,14Z,17Z-eicosapentaenoyl to the C-2 atom. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(15:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(15:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65O9P (696.436597)


PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one pentadecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

C38H65O9P (696.436597)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of pentadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C39H69O8P (696.4729804)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-15:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(12-methyltetradecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-15:0)

[(2R)-2-[(12-methyltetradecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-15:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-15:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-15:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-15:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-15:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-15:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-15:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(a-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-15:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-15:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-15:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(13-methyltetradecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-15:0)

[(2R)-2-[(13-methyltetradecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-15:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-15:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-15:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-15:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-15:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-15:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-15:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(i-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-15:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy]phosphonic acid

C38H65O9P (696.436597)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-15:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-15:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Bisglaucumlide G

Bisglaucumlide G

C41H60O9 (696.423711)


   
   

Bisglaucumlide E

Bisglaucumlide E

C41H60O9 (696.423711)


   

Bisglaucumlide I

Bisglaucumlide I

C41H60O9 (696.423711)


   

24-epi-7beta-hydroxy-24-O-acetylhydroshengmanol-3-O-beta-D-xylopyranoside

24-epi-7beta-hydroxy-24-O-acetylhydroshengmanol-3-O-beta-D-xylopyranoside

C37H60O12 (696.408456)


   

3-O-beta-D-glucopyranosylplatycodigenin methyl ester

3-O-beta-D-glucopyranosylplatycodigenin methyl ester

C37H60O12 (696.408456)


   
   

(3R,5beta,16R,17S,20R,22S,23S,24S,25S)-27-(acetoxy)-22,25-epoxy-16,17,23-trihydroxystigmast-7-en-3-yl beta-D-glucopyranoside|ajugasalicioside E

(3R,5beta,16R,17S,20R,22S,23S,24S,25S)-27-(acetoxy)-22,25-epoxy-16,17,23-trihydroxystigmast-7-en-3-yl beta-D-glucopyranoside|ajugasalicioside E

C37H60O12 (696.408456)


   

3-O-beta-D-Glucopyranoside,28-Ac-(3beta,5alpha,20xi,24S,28xi)-3,20,25,28-Tetrahydroxystigmastane-6,16-dione

3-O-beta-D-Glucopyranoside,28-Ac-(3beta,5alpha,20xi,24S,28xi)-3,20,25,28-Tetrahydroxystigmastane-6,16-dione

C37H60O12 (696.408456)


   
   

cumingianoside B

cumingianoside B

C38H64O11 (696.4448394)


A triterpenoid saponin that is 13,30-cyclodammarane-3,7,23,24,25-pentol esterified to the corresponding acetate at position 3 and attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum, it exhibits antileukemic activity.

   

3-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin F

3-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin F

C37H60O12 (696.408456)


   

16-O-acetyl-4R-cycloartan-3beta,6alpha,16beta,24,25-pentaol 3-O-beta-D-glucopyranoside|cyclounifolioside D

16-O-acetyl-4R-cycloartan-3beta,6alpha,16beta,24,25-pentaol 3-O-beta-D-glucopyranoside|cyclounifolioside D

C38H64O11 (696.4448394)


   
   

methyl (1E,5S,9R,10S,12R,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,12,14,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-docosahydro-10-hydroxy-12-methoxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide I

methyl (1E,5S,9R,10S,12R,14aS,17S,21R,24S,26aS,26bS)-3,5,8,9,10,11,12,14,14a,15,16,17,18,19,20,21,22,23,24,25,26,26b-docosahydro-10-hydroxy-12-methoxy-2,6,10,13,17,21-hexamethyl-15,22,25-trioxo-24-(propan-2-yl)-5,9-epoxybenzo[1,2-a:3,4-a?]di[14]annulene-26a(4H)-carboxylate|sarcophytolide I

C42H64O8 (696.4600944)


   
   
   

Bisandrographolide D

Bisandrographolide D

C41H60O9 (696.423711)


   

4-Deglycosyl-Foromacidin A

4-Deglycosyl-Foromacidin A

C37H64N2O10 (696.4560724)


   

1,2-dilinoleoyl-PA

9,12-Octadecadienoic acid (Z,Z)-, 1-[(phosphonooxy)methyl]-1,2-ethanediyl ester

C39H69O8P (696.4729804)


   

PA(16:0/20:4)

5,8,11,14-Eicosatetraenoic acid, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, [R-(all-Z)]-

C39H69O8P (696.4729804)


   

PA(14:0/22:4(7Z,10Z,13Z,16Z))

1-tetradecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(16:1(9Z)/20:3(8Z,11Z,14Z))

1-(9Z-hexadecenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-octadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:3(6Z,9Z,12Z)/18:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:4(6Z,9Z,12Z,15Z)/18:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-octadecanoyl-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(20:3(8Z,11Z,14Z)/16:1(9Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z-hexadecenoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(22:4(7Z,10Z,13Z,16Z)/14:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-tetradecanoyl-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)/16:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-hexadecanoyl-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:3(9Z,12Z,15Z)/18:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-octadecenoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-octadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:0/18:4(6Z,9Z,12Z,15Z))

1-octadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H69O8P (696.4729804)


   

PA(18:2(9Z,12Z)/18:2(9Z,12Z))

1,2-di-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphate

C39H69O8P (696.4729804)


   

Linolein, 1,2-di-, dihydrogen phosphate

{2,3-bis[(9E,12E)-octadeca-9,12-dienoyloxy]propoxy}phosphonic acid

C39H69O8P (696.4729804)


   

PA 36:4

5,8,11,14-Eicosatetraenoic acid, 1-[[(1-oxohexadecyl)oxy]methyl]-2-(phosphonooxy)ethyl ester, [R-(all-Z)]-

C39H69O8P (696.4729804)


   

4-N-[4-[4-(diethylamino)-N-[4-(diethylamino)phenyl]anilino]phenyl]-4-N-[4-(diethylamino)phenyl]-1-N,1-N-diethylbenzene-1,4-diamine

4-N-[4-[4-(diethylamino)-N-[4-(diethylamino)phenyl]anilino]phenyl]-4-N-[4-(diethylamino)phenyl]-1-N,1-N-diethylbenzene-1,4-diamine

C46H60N6 (696.48792)


   
   

L-α-phosphatidic acid

L-α-phosphatidic acid

C39H69O8P (696.4729804)


   
   

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P-2 (696.4729804)


   

1-18:0-2-18:3-Phosphatidic acid

1-18:0-2-18:3-Phosphatidic acid

C39H69O8P-2 (696.4729804)


   

PA(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C38H65O9P (696.436597)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/15:0)

C38H65O9P (696.436597)


   

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(P-16:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C39H69O8P (696.4729804)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(P-16:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C39H69O8P (696.4729804)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(P-16:0/20:3(5Z,11Z,14Z)-O(8,9))

C39H69O8P (696.4729804)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(P-16:0/20:3(8Z,11Z,14Z)-O(5,6))

C39H69O8P (696.4729804)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(P-16:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C39H69O8P (696.4729804)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(P-16:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(P-16:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(P-16:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(P-16:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C39H69O8P (696.4729804)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/P-16:0)

C39H69O8P (696.4729804)


   

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(P-16:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C39H69O8P (696.4729804)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/P-16:0)

C39H69O8P (696.4729804)


   

PA(a-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(a-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C38H65O9P (696.436597)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-15:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/a-15:0)

C38H65O9P (696.436597)


   

PA(a-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(a-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C38H65O9P (696.436597)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-15:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/a-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-15:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C38H65O9P (696.436597)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-15:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C38H65O9P (696.436597)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-15:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-15:0)

C38H65O9P (696.436597)


   

PA(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(15:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C38H65O9P (696.436597)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/15:0)

C38H65O9P (696.436597)


   

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/15:0)

C38H65O9P (696.436597)


   

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/15:0)

C38H65O9P (696.436597)


   

PA(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/15:0)

C38H65O9P (696.436597)


   

PA(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C38H65O9P (696.436597)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/15:0)

C38H65O9P (696.436597)


   

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/a-15:0)

C38H65O9P (696.436597)


   

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(a-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/a-15:0)

C38H65O9P (696.436597)


   

PA(a-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(a-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-15:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/a-15:0)

C38H65O9P (696.436597)


   

PA(a-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(a-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C38H65O9P (696.436597)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-15:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/a-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(i-15:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-15:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(i-15:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C38H65O9P (696.436597)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-15:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-15:0)

C38H65O9P (696.436597)


   

PA(i-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(i-15:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C38H65O9P (696.436597)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-15:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-15:0)

C38H65O9P (696.436597)


   

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P-2 (696.4729804)


   

1-((Phosphonooxy)methyl)ethane-1,2-diyl bis((9Z,12Z)-octadeca-9,12-dienoate)

1-((Phosphonooxy)methyl)ethane-1,2-diyl bis((9Z,12Z)-octadeca-9,12-dienoate)

C39H69O8P (696.4729804)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C39H69O8P (696.4729804)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C34H65O12P (696.421342)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tetradec-9-enoate

C38H65O9P (696.436597)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] decanoate

C34H65O12P (696.421342)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] undecanoate

C34H65O12P (696.421342)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tetradec-9-enoate

C34H65O12P (696.421342)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C38H65O9P (696.436597)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C38H65O9P (696.436597)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C38H65O9P (696.436597)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C34H65O12P (696.421342)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] decanoate

C38H65O9P (696.436597)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C38H65O9P (696.436597)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] dodecanoate

C34H65O12P (696.421342)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C38H65O9P (696.436597)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H68O10 (696.4812228000001)


   

[6-(3-Dodecanoyloxy-2-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(3-Dodecanoyloxy-2-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C39H68O10 (696.4812228000001)


   

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-tetradecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C39H68O10 (696.4812228000001)


   

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H68O10 (696.4812228000001)


   

6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C38H64O11 (696.4448394)


   

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C38H64O11 (696.4448394)


   

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(Z)-tetradec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C39H68O10 (696.4812228000001)


   

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812228000001)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-octadec-9-enoate

C39H69O8P (696.4729804)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C39H69O8P (696.4729804)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.4729804)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H69O8P (696.4729804)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C39H69O8P (696.4729804)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C39H69O8P (696.4729804)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C39H69O8P (696.4729804)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate

C39H69O8P (696.4729804)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C39H69O8P (696.4729804)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

C39H69O8P (696.4729804)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C39H69O8P (696.4729804)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C39H69O8P (696.4729804)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

2-[[(2S)-2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C39H69O8P (696.4729804)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.4729804)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.4729804)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-octadec-17-enoyloxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] octadecanoate

C39H69O8P (696.4729804)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.4729804)


   

[1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-tetradecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C39H69O8P (696.4729804)


   

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C39H69O8P (696.4729804)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tetradecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tetradecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H69O8P (696.4729804)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C39H69O8P (696.4729804)


   

[3-[2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

[3-[2,3-bis[[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate

C39H69O8P (696.4729804)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tetradecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tetradecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate

C39H69O8P (696.4729804)


   

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.4729804)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-octadec-17-enoyloxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.4729804)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

C39H69O8P (696.4729804)


   

2-[[(2R)-3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C39H68O10 (696.4812228000001)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H69O8P (696.4729804)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxypropoxy]propyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C39H69O8P (696.4729804)


   

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2R,3R,6R)-6-[(2S)-2-decanoyloxy-3-pentadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C34H64O12S (696.4118264000001)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(E)-octadec-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H69O8P (696.4729804)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] octadecanoate

C39H69O8P (696.4729804)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-13-enoate

C39H69O8P (696.4729804)


   

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H68O10 (696.4812228000001)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate

C39H69O8P (696.4729804)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

[3-[2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

[3-[2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propoxy]-1-carboxypropyl]-trimethylazanium

C42H66NO7+ (696.4839026)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

2-[[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H67NO8P+ (696.4604052)


   

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[carboxy-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-2-hydroxypropoxy]methoxy]ethyl-trimethylazanium

C42H66NO7+ (696.4839026)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-nonoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]-2-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[2-heptanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-heptanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H71NO7P+ (696.4967886)


   

(5-methyl-2-methylidenehexyl) (Z,2S)-2-hydroxy-6-[(1S,4Z,6E,9R,11R,12S,13S,14E,16Z,19E,21R,23R,24R)-11-hydroxy-24-(hydroxymethyl)-12,15,24-trimethyl-3-oxo-2,22,26-trioxatricyclo[19.3.1.19,13]hexacosa-4,6,14,16,19-pentaen-23-yl]hex-4-enoate

(5-methyl-2-methylidenehexyl) (Z,2S)-2-hydroxy-6-[(1S,4Z,6E,9R,11R,12S,13S,14E,16Z,19E,21R,23R,24R)-11-hydroxy-24-(hydroxymethyl)-12,15,24-trimethyl-3-oxo-2,22,26-trioxatricyclo[19.3.1.19,13]hexacosa-4,6,14,16,19-pentaen-23-yl]hex-4-enoate

C41H60O9 (696.423711)


   

1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphate

1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphate

C39H69O8P (696.4729804)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl) and 5Z,8Z,11Z,14Z-eicosatetraenoyl (arachidonoyl) respectively.

   

1-linolenoyl-2-oleoyl-sn-glycero-3-phosphate

1-linolenoyl-2-oleoyl-sn-glycero-3-phosphate

C39H69O8P (696.4729804)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as linolenoyl and oleoyl respectively.

   

1-(gamma-linolenoyl)-2-oleoyl-sn-glycero-3-phosphate

1-(gamma-linolenoyl)-2-oleoyl-sn-glycero-3-phosphate

C39H69O8P (696.4729804)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the acyl substituents at positions 1 and 2 are specified as gamma-linolenoyl and oleoyl respectively.

   

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

1-Linoleoyl-2-oleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P (696.4729804)


A 1,2-diacyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-linoleoyl-2-oleoyl-sn-glycero-3-phosphate.

   

1,2-dilinoleoyl-sn-glycero-3-phosphate

1,2-dilinoleoyl-sn-glycero-3-phosphate

C39H69O8P (696.4729804)


A 1-acyl-2-linoleoyl-sn-glycero-3-phosphate in which the 1-acyl group is also linoleoyl.

   

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

1-Oleoyl-2-linoleoyl-sn-glycero-3-phosphate(2-)

C39H69O8P (696.4729804)


A 1,2-diacyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-oleoyl-2-linoleoyl-sn-glycero-3-phosphate.

   

MGDG(30:3)

MGDG(16:0_14:3)

C39H68O10 (696.4812228000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(34:4)

BisMePA(18:4_16:0)

C39H69O8P (696.4729804)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/11:0 or PI O-14:1/11:0

PI P-14:0/11:0 or PI O-14:1/11:0

C34H65O12P (696.421342)


   
   

PI P-25:0 or PI O-25:1

PI P-25:0 or PI O-25:1

C34H65O12P (696.421342)


   
   
   
   
   

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23z,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23z,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl 6-[6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

methyl 6-[6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

C41H60O9 (696.423711)


   

(3s)-n-(2-{[(2z,3ar,7r,7as)-4,7-dihydroxy-1h,3h,3ah,6h,7h,7ah-imidazo[4,5-c]pyridin-2-ylidene]methyl}-4,5-dihydroxy-6-methyloxan-3-yl)-3-amino-6-{[(4s)-4-amino-7-{[(3s)-3,6-diamino-1-hydroxyhexylidene]amino}hept-1-en-2-yl]amino}hexanimidic acid

(3s)-n-(2-{[(2z,3ar,7r,7as)-4,7-dihydroxy-1h,3h,3ah,6h,7h,7ah-imidazo[4,5-c]pyridin-2-ylidene]methyl}-4,5-dihydroxy-6-methyloxan-3-yl)-3-amino-6-{[(4s)-4-amino-7-{[(3s)-3,6-diamino-1-hydroxyhexylidene]amino}hept-1-en-2-yl]amino}hexanimidic acid

C32H60N10O7 (696.4646210000001)


   

(3s,6r,9s,12s,15r,20as)-15-benzyl-9-[(2s)-butan-2-yl]-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20as)-15-benzyl-9-[(2s)-butan-2-yl]-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C38H60N6O6 (696.45741)


   

methyl (1r,2s,3s,8r,10e,14z,18r,21s,22r,23z,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8r,10e,14z,18r,21s,22r,23z,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,10z,14e,18s,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14e,18s,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O11 (696.4448394)


   

1-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-11-yl acetate

1-hydroxy-1-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-11-yl acetate

C38H64O11 (696.4448394)


   

(1s,2r,3r,5r,7r,10s,11r,14r,15s)-2,6,6,10-tetramethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-15-[(2r,4s,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl acetate

(1s,2r,3r,5r,7r,10s,11r,14r,15s)-2,6,6,10-tetramethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-15-[(2r,4s,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl acetate

C38H64O11 (696.4448394)


   

(1r,3ar,3br,5as,7r,9ar,9br,11r,11ar)-1-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-11-yl acetate

(1r,3ar,3br,5as,7r,9ar,9br,11r,11ar)-1-hydroxy-1-[(2s,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3a,3b,6,6,9a-pentamethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydrocyclopenta[a]phenanthren-11-yl acetate

C38H64O11 (696.4448394)


   

methyl (2e)-6-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

methyl (2e)-6-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,10e,14z,18s,21s,22r,23z,27r,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10e,14z,18s,21s,22r,23z,27r,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3r,5r,7r,10s,11r,14s,15r)-7-hydroxy-2,6,6,10-tetramethyl-15-[(2r,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3r,5r,7r,10s,11r,14s,15r)-7-hydroxy-2,6,6,10-tetramethyl-15-[(2r,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl]methyl acetate

C38H64O11 (696.4448394)


   

methyl 2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl 2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,14e,18s,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,14e,18s,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,10s,13e,17z,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10s,13e,17z,21s,22s,23e,27s,28r)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,5r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O11 (696.4448394)


   

(3,4,5-trihydroxy-6-{[7-hydroxy-2,6,6,10-tetramethyl-15-(4,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl)methyl acetate

(3,4,5-trihydroxy-6-{[7-hydroxy-2,6,6,10-tetramethyl-15-(4,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl)methyl acetate

C38H64O11 (696.4448394)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O11 (696.4448394)


   

5-methyl-2-methylidenehexyl (2s,4z)-2-hydroxy-6-[(1s,4z,6e,9r,11r,12s,13s,14e,16z,19e,21r,23r,24r)-11-hydroxy-24-(hydroxymethyl)-12,15,24-trimethyl-3-oxo-2,22,26-trioxatricyclo[19.3.1.1⁹,¹³]hexacosa-4,6,14,16,19-pentaen-23-yl]hex-4-enoate

5-methyl-2-methylidenehexyl (2s,4z)-2-hydroxy-6-[(1s,4z,6e,9r,11r,12s,13s,14e,16z,19e,21r,23r,24r)-11-hydroxy-24-(hydroxymethyl)-12,15,24-trimethyl-3-oxo-2,22,26-trioxatricyclo[19.3.1.1⁹,¹³]hexacosa-4,6,14,16,19-pentaen-23-yl]hex-4-enoate

C41H60O9 (696.423711)


   

methyl (1r,2s,3s,8s,10z,14e,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14e,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

methyl (2e,5s)-6-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

methyl (2e,5s)-6-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-{2-[(1r,4as,5r,6r,8as)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}-4-oxo-5-(2-oxo-5h-furan-3-yl)hexanoate

C41H60O9 (696.423711)


   

(2s)-5-carbamimidamido-2-[(8-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]pentanoic acid

(2s)-5-carbamimidamido-2-[(8-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]pentanoic acid

C38H56N4O8 (696.4097936000001)


   

methyl (1r,2s,3s,8s,10z,14e,18s,21r,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14e,18s,21r,22s,23e,27s,28r)-2,3,28-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O11 (696.4448394)


   

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23e,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10z,14z,18s,21s,22s,23e,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r)-2,5-dihydroxy-6-methylhept-6-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O11 (696.4448394)


   

15-benzyl-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

15-benzyl-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C38H60N6O6 (696.45741)


   

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-6-{[(1s,3ar,3br,5as,7r,8r,9s,9ar,9bs,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methylhept-4-en-2-yl]-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate

C38H64O11 (696.4448394)


   

2,6,6,10-tetramethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-15-(4,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl acetate

2,6,6,10-tetramethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-15-(4,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl acetate

C38H64O11 (696.4448394)


   

methyl (1r,2s,3s,8s,10e,14e,18s,21s,22s,23e,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10e,14e,18s,21s,22s,23e,27s,28s)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-hydroxy-2,6,6,10-tetramethyl-15-[(2s,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3r,5r,7r,10s,11r,14r,15s)-7-hydroxy-2,6,6,10-tetramethyl-15-[(2s,4r,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-3-yl]oxy}oxan-2-yl]methyl acetate

C38H64O11 (696.4448394)


   

(3s,6r,9s,12s,15r,20ar)-15-benzyl-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20ar)-15-benzyl-1,4,7,10,13-pentahydroxy-3,6,12-tris(2-methylpropyl)-9-(sec-butyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C38H60N6O6 (696.45741)


   

methyl (1r,2s,3s,8s,10s,13e,17z,21r,22s,23e,27s,28r)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,10s,13e,17z,21r,22s,23e,27s,28r)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

(6-{[1-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[1-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C38H64O11 (696.4448394)


   

(6-{[1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

(6-{[1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl acetate

C38H64O11 (696.4448394)


   

methyl (1r,2s,3s,8s,14e,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

methyl (1r,2s,3s,8s,14e,18s,21s,22s,23e,27s,28r)-2,3,27-trihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,10,14,23-tetraene-21-carboxylate

C41H60O9 (696.423711)


   

(3r)-4-[(4ar,6as,10as,10bs)-4a,7,7,10a-tetramethyl-octahydro-1h-naphtho[2,1-d][1,3]dioxin-3-yl]-5-{[(1s,2r,4as,8as)-2-hydroxy-2,5,5,8a-tetramethyl-hexahydro-1h-naphthalen-1-yl]methoxy}-3,7-dimethoxy-6-methyl-3h-2-benzofuran-1-one

(3r)-4-[(4ar,6as,10as,10bs)-4a,7,7,10a-tetramethyl-octahydro-1h-naphtho[2,1-d][1,3]dioxin-3-yl]-5-{[(1s,2r,4as,8as)-2-hydroxy-2,5,5,8a-tetramethyl-hexahydro-1h-naphthalen-1-yl]methoxy}-3,7-dimethoxy-6-methyl-3h-2-benzofuran-1-one

C42H64O8 (696.4600944)


   

2-{[1-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

2-{[1-(2,5-dihydroxy-6-methylhept-6-en-2-yl)-8,9-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C38H64O11 (696.4448394)


   

methyl (13e,17z,23e)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

methyl (13e,17z,23e)-2,3,28-trihydroxy-10-isopropyl-2,6,13,17,24,28-hexamethyl-9,12,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,13,17,23-tetraene-21-carboxylate

C41H60O9 (696.423711)