Exact Mass: 692.5226912

Exact Mass Matches: 692.5226912

Found 423 metabolites which its exact mass value is equals to given mass value 692.5226912, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

DG(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H72O5 (692.5379462)


DG(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H72O5 (692.5379462)


DG(20:3(5Z,8Z,11Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(5Z,8Z,11Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


DG(20:3(5Z,8Z,11Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(5Z,8Z,11Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(5Z,8Z,11Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H72O5 (692.5379462)


DG(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


DG(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:3(8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(5Z,8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


DG(20:4(5Z,8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


DG(20:4(8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/22:4(7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of adrenic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


DG(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


DG(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:4(7Z,10Z,13Z,16Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The adrenic acid moiety is derived from animal fats, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H72O5 (692.5379462)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C45H72O5 (692.5379462)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(5Z,8Z,11Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of mead acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the mead acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H72O5 (692.5379462)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:2(11Z,14Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:3n9/0:0/22:5n6)

(2R)-2-Hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C45H72O5 (692.5379462)


DG(20:3n9/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/22:5n6), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n9/0:0/22:5n3)

(2S)-2-Hydroxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propyl (7Z,10Z,13Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C45H72O5 (692.5379462)


DG(20:3n9/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n9/0:0/22:5n3), in particular, consists of one chain of mead acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The mead acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:2n6/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C45H72O5 (692.5379462)


DG(20:2n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:2n6/0:0/22:6n3), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n6/0:0/22:5n6)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C45H72O5 (692.5379462)


DG(20:3n6/0:0/22:5n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n6/0:0/22:5n6), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:3n6/0:0/22:5n3)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C45H72O5 (692.5379462)


DG(20:3n6/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:3n6/0:0/22:5n3), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n6/0:0/22:4n6)

(2S)-2-Hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoic acid

C45H72O5 (692.5379462)


DG(20:4n6/0:0/22:4n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/22:4n6), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of adrenic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the adrenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:4n6/0:0/20:4n3)

(2S)-2-Hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoic acid

C45H72O5 (692.5379462)


DG(22:4n6/0:0/20:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:4n6/0:0/20:4n3), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-3 position. The adrenic acid moiety is derived from animal fats, while the eicosatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

Cer(d16:1/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-{[(2S,3R)-1,3-dihydroxyhexadec-4-en-2-yl]-C-hydroxycarbonimidoyl}ethyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

C39H68N2O6S (692.4797828000001)


Cer(d16:1/LTE4) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).

   

DG(18:0/PGE2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(18:0/PGE2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/PGE2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl octadecanoic acid

C41H72O8 (692.5226912)


DG(PGE2/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE2/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/0:0/PGE2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(18:0/0:0/PGE2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/0:0/18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(PGE2/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/PGD2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(18:0/PGD2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/PGD2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl octadecanoic acid

C41H72O8 (692.5226912)


DG(PGD2/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD2/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/0:0/PGD2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(18:0/0:0/PGD2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/0:0/18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl octadecanoic acid

C41H72O8 (692.5226912)


DG(PGD2/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

(2S)-1-Hydroxy-3-(octadecanoyloxy)propan-2-yl (5S,6S,7E,9E,11Z,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:0/0:0)

(2S)-3-Hydroxy-2-(octadecanoyloxy)propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2R)-2-Hydroxy-3-(octadecanoyloxy)propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/18:0)

(2S)-2-Hydroxy-3-(octadecanoyloxy)propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

(2S)-1-Hydroxy-3-(nonadecanoyloxy)propan-2-yl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/19:0/0:0)

(2S)-3-Hydroxy-2-(nonadecanoyloxy)propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(20:3(8Z,11Z,14Z)-2OH(5,6)/19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(8Z,11Z,14Z)-2OH(5,6)/19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2R)-2-Hydroxy-3-(nonadecanoyloxy)propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/19:0)

(2S)-2-Hydroxy-3-(nonadecanoyloxy)propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/PGE2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(i-18:0/PGE2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/PGE2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/i-18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(PGE2/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGE2/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/0:0/PGE2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(i-18:0/0:0/PGE2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGE2/0:0/i-18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(PGE2/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/PGD2/0:0)

(2S)-3-Hydroxy-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(i-18:0/PGD2/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/PGD2/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/i-18:0/0:0)

(2S)-1-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propan-2-yl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(PGD2/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(PGD2/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/0:0/PGD2)

(2R)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(i-18:0/0:0/PGD2) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(PGD2/0:0/i-18:0)

(2S)-2-Hydroxy-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propyl 16-methylheptadecanoic acid

C41H72O8 (692.5226912)


DG(PGD2/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

(2S)-1-Hydroxy-3-[(16-methylheptadecanoyl)oxy]propan-2-yl (5S,6S,7E,9E,11Z,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(i-18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-18:0/0:0)

(2S)-3-hydroxy-2-[(16-methylheptadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoate

C41H72O8 (692.5226912)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-18:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-18:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

(2R)-2-Hydroxy-3-[(16-methylheptadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(i-18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-18:0)

(2S)-2-Hydroxy-3-[(16-methylheptadecanoyl)oxy]propyl (5R,6R,7E,9E,11Z,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoic acid

C41H72O8 (692.5226912)


DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-18:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

(2S)-1-Hydroxy-3-[(17-methyloctadecanoyl)oxy]propan-2-yl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(i-19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-19:0/0:0)

(2S)-3-Hydroxy-2-[(17-methyloctadecanoyl)oxy]propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-19:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-19:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

(2R)-2-Hydroxy-3-[(17-methyloctadecanoyl)oxy]propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(i-19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/i-19:0)

(2S)-2-Hydroxy-3-[(17-methyloctadecanoyl)oxy]propyl (8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoic acid

C42H76O7 (692.5590746)


DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/i-19:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   
   

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-[(8Z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione|belamcandaquinone L

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-[(8Z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione|belamcandaquinone L

C45H72O5 (692.5379462)


   

DG(20:5/22:3/0:0)[iso2]

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(10Z,13Z,16Z-docosatrienoyl)-sn-glycerol

C45H72O5 (692.5379462)


   

DG(20:4/22:4/0:0)[iso2]

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycerol

C45H72O5 (692.5379462)


   

DG(20:3/22:5/0:0)[iso2]

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C45H72O5 (692.5379462)


   

DG(20:2/22:6/0:0)[iso2]

1-(11Z,14Z-eicosadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C45H72O5 (692.5379462)


   

Diglyceride

1-docosapentaenoyl-2-homo-gamma-linolenoyl-sn-glycerol

C45H72O5 (692.5379462)


   

PG(O-16:0/15:1(9Z))

1-hexadecyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H73O9P (692.4991938)


   

PG(P-16:0/15:0)

1-(1Z-hexadecenyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H73O9P (692.4991938)


   

PG(P-18:0/13:0)

1-(1Z-octadecenyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H73O9P (692.4991938)


   

DG 42:8

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-sn-glycerol

C45H72O5 (692.5379462)


   

PG O-31:1

1-(1Z-hexadecenyl)-2-pentadecanoyl-glycero-3-phospho-(1-sn-glycerol)

C37H73O9P (692.4991938)


   

Coleneuramide

Coleneuramide

C39H68N2O8 (692.4975408000001)


C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

Decamethoxin

Decamethoxin

C38H74Cl2N2O4 (692.5025344000001)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

2-[hydroxy-[(2R)-3-pentadecanoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-pentadecanoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   
   

DG(18:0/PGE2/0:0)

DG(18:0/PGE2/0:0)

C41H72O8 (692.5226912)


   

DG(PGE2/18:0/0:0)

DG(PGE2/18:0/0:0)

C41H72O8 (692.5226912)


   

DG(18:0/0:0/PGE2)

DG(18:0/0:0/PGE2)

C41H72O8 (692.5226912)


   

DG(PGE2/0:0/18:0)

DG(PGE2/0:0/18:0)

C41H72O8 (692.5226912)


   

DG(18:0/PGD2/0:0)

DG(18:0/PGD2/0:0)

C41H72O8 (692.5226912)


   

DG(PGD2/18:0/0:0)

DG(PGD2/18:0/0:0)

C41H72O8 (692.5226912)


   

DG(18:0/0:0/PGD2)

DG(18:0/0:0/PGD2)

C41H72O8 (692.5226912)


   

DG(PGD2/0:0/18:0)

DG(PGD2/0:0/18:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/PGE2/0:0)

DG(i-18:0/PGE2/0:0)

C41H72O8 (692.5226912)


   

DG(PGE2/i-18:0/0:0)

DG(PGE2/i-18:0/0:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/0:0/PGE2)

DG(i-18:0/0:0/PGE2)

C41H72O8 (692.5226912)


   

DG(PGE2/0:0/i-18:0)

DG(PGE2/0:0/i-18:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/PGD2/0:0)

DG(i-18:0/PGD2/0:0)

C41H72O8 (692.5226912)


   

DG(PGD2/i-18:0/0:0)

DG(PGD2/i-18:0/0:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/0:0/PGD2)

DG(i-18:0/0:0/PGD2)

C41H72O8 (692.5226912)


   

DG(PGD2/0:0/i-18:0)

DG(PGD2/0:0/i-18:0)

C41H72O8 (692.5226912)


   

DG(19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

DG(19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

C42H76O7 (692.5590746)


   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/19:0/0:0)

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/19:0/0:0)

C42H76O7 (692.5590746)


   

DG(19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

DG(19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H76O7 (692.5590746)


   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/19:0)

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/19:0)

C42H76O7 (692.5590746)


   

DG(i-19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

DG(i-19:0/20:3(8Z,11Z,14Z)-2OH(5,6)/0:0)

C42H76O7 (692.5590746)


   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-19:0/0:0)

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/i-19:0/0:0)

C42H76O7 (692.5590746)


   

DG(i-19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

DG(i-19:0/0:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C42H76O7 (692.5590746)


   

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/i-19:0)

DG(20:3(8Z,11Z,14Z)-2OH(5,6)/0:0/i-19:0)

C42H76O7 (692.5590746)


   

DG(18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

DG(18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

C41H72O8 (692.5226912)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:0/0:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/18:0/0:0)

C41H72O8 (692.5226912)


   

DG(18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

DG(18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H72O8 (692.5226912)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/18:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/18:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

DG(i-18:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0)

C41H72O8 (692.5226912)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-18:0/0:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-18:0/0:0)

C41H72O8 (692.5226912)


   

DG(i-18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

DG(i-18:0/0:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C41H72O8 (692.5226912)


   

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-18:0)

DG(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/0:0/i-18:0)

C41H72O8 (692.5226912)


   

2-[hydroxy-[(2R)-2-pentadecanoyloxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-pentadecanoyloxy-3-tetradecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[[(2R)-2-decanoyloxy-3-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-decanoyloxy-3-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[hydroxy-[(2R)-3-icosanoyloxy-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-icosanoyloxy-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[[(2R)-2-henicosanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-henicosanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[[(2R)-2-hexadecanoyloxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-hexadecanoyloxy-3-tetradecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[[(2R)-3-decanoyloxy-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-nonadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[3,4-Dihydroxy-2-(tetradecanoylamino)octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3,4-Dihydroxy-2-(tetradecanoylamino)octadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H77N2O7P (692.5468102)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (Z)-nonadec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-heptadec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (Z)-tetradec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] heptadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] heptadecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] decanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] undecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-octadec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (Z)-tridec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (Z)-pentadec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] tridecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] dodecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-icos-11-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] pentadecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] octadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] octadecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] hexadecanoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-hexadec-9-enoate

C37H73O9P (692.4991938)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] tetradecanoate

C37H73O9P (692.4991938)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

C37H73O9P (692.4991938)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodecyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]decyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoate

C45H72O5 (692.5379462)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoate

C45H72O5 (692.5379462)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H72O5 (692.5379462)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C45H72O5 (692.5379462)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C45H72O5 (692.5379462)


   

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoate

C45H72O5 (692.5379462)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C45H72O5 (692.5379462)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H72O5 (692.5379462)


   

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-octanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-octanoyloxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C45H72O5 (692.5379462)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-octanoyloxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H72O5 (692.5379462)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octoxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octoxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H72O5 (692.5379462)


   

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-octanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-octanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H72O5 (692.5379462)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H72O5 (692.5379462)


   

[2-decanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[2-decanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H72O5 (692.5379462)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-nonanoyloxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C44H68O6 (692.5015628000001)


   

[3-decoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[3-decoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H72O5 (692.5379462)


   

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H69N2O6P (692.4892984)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C45H72O5 (692.5379462)


   

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C45H72O5 (692.5379462)


   

[1-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H72O5 (692.5379462)


   

2-[[(2R)-3-hexadecanoyloxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-hexadecanoyloxy-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[hydroxy-[(2R)-2-octadecanoyloxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-octadecanoyloxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-tridecanoyloxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C44H68O6 (692.5015628000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H68O6 (692.5015628000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxypropyl] (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C44H68O6 (692.5015628000001)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (11Z,14Z)-heptadeca-11,14-dienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (11Z,14Z)-heptadeca-11,14-dienoate

C44H68O6 (692.5015628000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,12Z)-pentadeca-9,12-dienoate

C44H68O6 (692.5015628000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C44H68O6 (692.5015628000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H68O6 (692.5015628000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoate

C44H68O6 (692.5015628000001)


   

2-[Hydroxy-(2-octadecanoyloxy-3-undecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-octadecanoyloxy-3-undecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(3-Dodecanoyloxy-2-heptadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Dodecanoyloxy-2-heptadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(2-Hexadecanoyloxy-3-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Hexadecanoyloxy-3-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[Hydroxy-(2-pentadecanoyloxy-3-tetradecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-pentadecanoyloxy-3-tetradecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(2-Hexadecanoyloxy-3-tetradecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Hexadecanoyloxy-3-tetradecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[[(2R)-3-dodecanoyloxy-2-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-dodecanoyloxy-2-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[[(2R)-2-hexadecanoyloxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-hexadecanoyloxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(3-Hexadecoxy-2-tetradecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Hexadecoxy-2-tetradecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Dodecanoyloxy-3-octadecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Dodecanoyloxy-3-octadecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Decanoyloxy-2-nonadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Decanoyloxy-2-nonadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(2-Henicosanoyloxy-3-octanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Henicosanoyloxy-3-octanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[Hydroxy-(2-icosanoyloxy-3-nonanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-icosanoyloxy-3-nonanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-nonadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-nonadecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

2-[[(2S)-2-dodecanoyloxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-dodecanoyloxy-3-heptadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H72O5 (692.5379462)


   

[(2S)-3-hydroxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-dodecanoyloxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-dodecanoyloxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-heptadecanoyloxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-heptadecanoyloxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[(2S)-1-hydroxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-hydroxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H72O5 (692.5379462)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (17E,20E,23E)-hexacosa-17,20,23-trienoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(E)-henicos-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(E)-henicos-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(9E,11E)-henicosa-9,11-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-decanoyloxy-3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoate

C45H72O5 (692.5379462)


   

[(2S)-3-hydroxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-hydroxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[2-dodecanoyloxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-dodecanoyloxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

2-[hydroxy-[(2S)-3-octadecanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2S)-3-octadecanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-heptadecanoyloxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-heptadecanoyloxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-decanoyloxy-2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-hexadecanoyloxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-hexadecanoyloxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(E)-henicos-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(E)-henicos-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(E)-heptadec-7-enoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-heptadec-7-enoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(E)-nonadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-[(E)-heptadec-7-enoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-heptadec-7-enoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[(2S)-1-hydroxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H72O5 (692.5379462)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-nonadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-nonadecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[3-hexadecanoyloxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-hexadecanoyloxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-pentadecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

2-[(3-Acetyloxy-2-heptacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Acetyloxy-2-heptacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(3-Hexanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Hexanoyloxy-2-tricosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[Hydroxy-(3-pentanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(3-pentanoyloxy-2-tetracosanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(3-Butanoyloxy-2-pentacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Butanoyloxy-2-pentacosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[(2-Hexacosanoyloxy-3-propanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Hexacosanoyloxy-3-propanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

[1-carboxy-3-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

[1-carboxy-3-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C41H74NO7+ (692.5464993999999)


   

2-[(2-Docosanoyloxy-3-heptanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Docosanoyloxy-3-heptanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H75NO8P+ (692.523002)


   

2-[carboxy-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H70NO8+ (692.510116)


   

2-[carboxy-[3-decanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H70NO8+ (692.510116)


   

2-[Hydroxy-(2-hydroxy-3-triacontanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-hydroxy-3-triacontanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Docosanoyloxy-3-octoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Docosanoyloxy-3-octoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[carboxy-[3-dodecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-dodecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H70NO8+ (692.510116)


   

2-[carboxy-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H70NO8+ (692.510116)


   

2-[carboxy-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H70NO8+ (692.510116)


   

2-[(2-Acetyloxy-3-octacosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Acetyloxy-3-octacosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Heptadecanoyloxy-3-tridecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Heptadecanoyloxy-3-tridecoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[Hydroxy-(2-nonadecanoyloxy-3-undecoxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-nonadecanoyloxy-3-undecoxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Decanoyloxy-3-icosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Decanoyloxy-3-icosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Henicosoxy-2-nonanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Henicosoxy-2-nonanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Docosoxy-2-octanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Docosoxy-2-octanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Decoxy-2-icosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Decoxy-2-icosanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Heptanoyloxy-3-tricosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Heptanoyloxy-3-tricosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Dodecoxy-2-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Dodecoxy-2-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Heptadecoxy-2-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Heptadecoxy-2-tridecanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[Hydroxy-(2-pentadecanoyloxy-3-pentadecoxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(2-pentadecanoyloxy-3-pentadecoxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Butanoyloxy-3-hexacosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Butanoyloxy-3-hexacosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Henicosanoyloxy-3-nonoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Henicosanoyloxy-3-nonoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(2-Hexanoyloxy-3-tetracosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Hexanoyloxy-3-tetracosoxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[Hydroxy-(3-nonadecoxy-2-undecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(3-nonadecoxy-2-undecanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[Hydroxy-(3-pentacosoxy-2-pentanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-(3-pentacosoxy-2-pentanoyloxypropoxy)phosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

2-[(3-Heptacosoxy-2-propanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(3-Heptacosoxy-2-propanoyloxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H79NO7P+ (692.5593853999999)


   

TG(42:8)

TG(20:1(1)_11:3_11:4)

C45H72O5 (692.5379462)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/17:0 or PG O-14:1/17:0

PG P-14:0/17:0 or PG O-14:1/17:0

C37H73O9P (692.4991938)


   
   

PG P-16:0/15:0 or PG O-16:1/15:0

PG P-16:0/15:0 or PG O-16:1/15:0

C37H73O9P (692.4991938)


   
   

PG P-18:0/13:0 or PG O-18:1/13:0

PG P-18:0/13:0 or PG O-18:1/13:0

C37H73O9P (692.4991938)


   
   

PG P-20:0/11:0 or PG O-20:1/11:0

PG P-20:0/11:0 or PG O-20:1/11:0

C37H73O9P (692.4991938)


   
   

PG P-31:0 or PG O-31:1

PG P-31:0 or PG O-31:1

C37H73O9P (692.4991938)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-[(8z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-[(8z)-heptadec-8-en-1-yl]-5-methoxycyclohexa-2,5-diene-1,4-dione

C45H72O5 (692.5379462)


   

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-(heptadec-8-en-1-yl)-5-methoxycyclohexa-2,5-diene-1,4-dione

2-(2,4-dihydroxy-6-pentadecylphenyl)-3-(heptadec-8-en-1-yl)-5-methoxycyclohexa-2,5-diene-1,4-dione

C45H72O5 (692.5379462)