Exact Mass: 692.4169114

Exact Mass Matches: 692.4169114

Found 50 metabolites which its exact mass value is equals to given mass value 692.4169114, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

PA(12:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-(dodecanoyloxy)propoxy]phosphonic acid

C35H65O11P (692.426427)


PA(12:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGF1alpha), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/12:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-(dodecanoyloxy)propoxy]phosphonic acid

C35H65O11P (692.426427)


PA(PGF1alpha/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/12:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H65O11P (692.426427)


PA(i-12:0/PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGF1alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF1alpha/i-12:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H65O11P (692.426427)


PA(PGF1alpha/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF1alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   
   
   

Bayogenin base + O-HexA

Bayogenin base + O-HexA

C38H60O11 (692.413541)


Annotation level-3

   
   

Medicagenic acid 3-O-beta-D-glucoside dimethyl ester

Medicagenic acid 3-O-beta-D-glucoside dimethyl ester

C38H60O11 (692.413541)


   

3,23-(2-hydroxyethylidene)-3beta,19alpha,23-trihydroxyurs-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester|oblonganoside J

3,23-(2-hydroxyethylidene)-3beta,19alpha,23-trihydroxyurs-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester|oblonganoside J

C38H60O11 (692.413541)


   

25-(acetyloxy)-2-(beta-D-glucopyranosyloxy)-3,16-dihydroxy-9-methyl-19-norlanosta-5,23-dien-22-one

25-(acetyloxy)-2-(beta-D-glucopyranosyloxy)-3,16-dihydroxy-9-methyl-19-norlanosta-5,23-dien-22-one

C38H60O11 (692.413541)


   

2alpha,3beta,19alpha-trihydroxyurs-12-en-28-oic acid 28-O-6-O-acetyl-beta-D-glucopyranosyl ester|potentillanoside C

2alpha,3beta,19alpha-trihydroxyurs-12-en-28-oic acid 28-O-6-O-acetyl-beta-D-glucopyranosyl ester|potentillanoside C

C38H60O11 (692.413541)


   

16,17-didehydro-23R,24R-O-acetylhydroshengmanol-3-O-beta-D-galactopyranoside

16,17-didehydro-23R,24R-O-acetylhydroshengmanol-3-O-beta-D-galactopyranoside

C38H60O11 (692.413541)


   

2alpha-acetoxyl-3beta,6beta-dihydroxylup-20(29)-en-28-oic acid beta-glucopyranosyl ester

2alpha-acetoxyl-3beta,6beta-dihydroxylup-20(29)-en-28-oic acid beta-glucopyranosyl ester

C38H60O11 (692.413541)


   

25-O-acetylcimigenol-3-O-beta-D-galactopyranoside

25-O-acetylcimigenol-3-O-beta-D-galactopyranoside

C38H60O11 (692.413541)


   

marinisporolide B

marinisporolide B

C38H60O11 (692.413541)


   

2-O-acetylsuavissimoside F1

2-O-acetylsuavissimoside F1

C38H60O11 (692.413541)


   

24-O-acetyl-25-O-methyl-7,8-didehydrohydroshengmanol 3-O-beta-D-xylopyranoside

24-O-acetyl-25-O-methyl-7,8-didehydrohydroshengmanol 3-O-beta-D-xylopyranoside

C38H60O11 (692.413541)


   

Monensin sodium salt

Monensin sodium salt

C36H61NaO11 (692.4111356)


Monensin sodium salt is an antibiotic secreted by the bacteria Streptomyces cinnamonensis. Monensin sodium salt is an ionophore that mediates Na+/H+ exchange. Monensin sodium salt causes a marked enlargement of the multivesicular bodies (MVBs) and regulates exosome secretion[1][2][3][4].

   

Monensin A, Na salt

Monensin A, Na salt

C36H61NaO11 (692.4111356)


Origin: Microbe

   

Monensin A Na salt

Monensin A Na salt

C36H61NaO11 (692.4111356)


Origin: Microbe

   

Monensin Sodium

Monensin sodium salt

C36H61NaO11 (692.4111356)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores D049990 - Membrane Transport Modulators Monensin sodium salt is an antibiotic secreted by the bacteria Streptomyces cinnamonensis. Monensin sodium salt is an ionophore that mediates Na+/H+ exchange. Monensin sodium salt causes a marked enlargement of the multivesicular bodies (MVBs) and regulates exosome secretion[1][2][3][4].

   
   
   

PA(i-12:0/PGF1alpha)

PA(i-12:0/PGF1alpha)

C35H65O11P (692.426427)


   

PA(PGF1alpha/i-12:0)

PA(PGF1alpha/i-12:0)

C35H65O11P (692.426427)


   

2-[[(2R)-2-[(E)-7-carboxy-5-hydroxyhept-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-carboxy-5-hydroxyhept-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H63NO11P+ (692.4138518)


   
   
   
   
   
   
   
   
   
   
   
   

[(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carbonyloxy]acetic acid

[(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carbonyloxy]acetic acid

C38H60O11 (692.413541)


   

(6r)-6-[(1e,3r,5e,7e,9s,11r,12s,13s)-12-{[(2r,3s,4r,5s,6r)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

(6r)-6-[(1e,3r,5e,7e,9s,11r,12s,13s)-12-{[(2r,3s,4r,5s,6r)-5-{[(2r,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

C38H60O11 (692.413541)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10ar,10bs)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

C38H60O11 (692.413541)


   

4,8a-dimethyl 2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate

4,8a-dimethyl 2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate

C38H60O11 (692.413541)


   

6-[12-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

6-[12-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

C38H60O11 (692.413541)


   

(6r)-6-[(1e,3s,5e,7e,9r,11s,12r,13s)-12-{[(2r,3r,4s,5r,6r)-5-{[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

(6r)-6-[(1e,3s,5e,7e,9r,11s,12r,13s)-12-{[(2r,3r,4s,5r,6r)-5-{[(2s,4s,5s,6s)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,7,9,11,13-pentamethyl-10-oxohexadeca-1,5,7-trien-1-yl]-5,6-dihydropyran-2-one

C38H60O11 (692.413541)


   

4,8a-dimethyl (2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate

4,8a-dimethyl (2s,3r,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-2-hydroxy-4,6a,6b,11,11,14b-hexamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylate

C38H60O11 (692.413541)


   

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

(1r,2r,3r,3ar,4s,5ar,6s,7s,8s,10as,10br)-8-(acetyloxy)-3,4,6-tris(butanoyloxy)-7-hydroxy-1-isopropyl-3a,5a,9-trimethyl-1h,2h,3h,4h,5h,6h,7h,8h,10ah,10bh-cyclohepta[e]inden-2-yl butanoate

C38H60O11 (692.413541)


   

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl}-2-methoxy-2-methylpropyl acetate

1-{10,11-dihydroxy-4,6,12,17,17-pentamethyl-18-[(3,4,5-trihydroxyoxan-2-yl)oxy]-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docos-13-en-8-yl}-2-methoxy-2-methylpropyl acetate

C38H60O11 (692.413541)