Exact Mass: 690.4471612

Exact Mass Matches: 690.4471612

Found 315 metabolites which its exact mass value is equals to given mass value 690.4471612, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

PA(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z))

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C39H63O8P (690.4260328)


PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PG(i-12:0/18:2(9Z,11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(10-methylundecanoyl)oxy]-2-[(9Z,11Z)-octadeca-9,11-dienoyloxy]propoxy]phosphinic acid

C36H67O10P (690.4471612)


PG(i-12:0/18:2(9Z,11Z)) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/18:2(9Z,11Z)), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of (9Z,11Z)-octadecadienoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.

   

[(2R,5S)-2,5-Dimethyl-5-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphate

[(2R,5S)-2,5-Dimethyl-5-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphoric acid

C38H63N2O7P (690.4372658)


   

PA(12:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-(dodecanoyloxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(12:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGF2alpha), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/12:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-(dodecanoyloxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGF2alpha/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/12:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/PGE1)

[(2R)-3-(dodecanoyloxy)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(12:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGE1), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/12:0)

[(2R)-2-(dodecanoyloxy)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGE1/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/12:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/PGD1)

[(2R)-3-(dodecanoyloxy)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(12:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGD1), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/12:0)

[(2R)-2-(dodecanoyloxy)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGD1/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/12:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(14:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/5-iso PGF2VI), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/14:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(5-iso PGF2VI/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/14:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(P-16:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(1E)-hexadec-1-en-1-yloxy]propoxy]phosphonic acid

C37H71O9P (690.4835446)


PA(P-16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(P-16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(18:1(12Z)-2OH(9,10)/P-16:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(1E)-hexadec-1-en-1-yloxy]propoxy]phosphonic acid

C37H71O9P (690.4835446)


PA(18:1(12Z)-2OH(9,10)/P-16:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/P-16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGF2alpha)

[(2R)-2-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(i-12:0/PGF2alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGF2alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGF2alpha/i-12:0)

[(2R)-3-{[(5E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGF2alpha/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGF2alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F2alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGE1)

[(2R)-2-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(i-12:0/PGE1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGE1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE1/i-12:0)

[(2R)-3-({7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGE1/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE1/i-12:0), in particular, consists of one chain of one Prostaglandin E1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGD1)

[(2R)-2-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(i-12:0/PGD1) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGD1), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD1/i-12:0)

[(2R)-3-({7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(PGD1/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD1/i-12:0), in particular, consists of one chain of one Prostaglandin D1 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(i-14:0/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/5-iso PGF2VI), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/i-14:0)

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C35H63O11P (690.4107778)


PA(5-iso PGF2VI/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/i-14:0), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   

Hederagenin base -2H + 1O, O-AcetylHex

Hederagenin base -2H + 1O, O-AcetylHex

C38H58O11 (690.3978918)


Annotation level-3

   
   

1-O-(Z-tetracos-17-enyl)-2,3-di-O-(beta-D-xylopyranosyl)-sn-glycerol|trikentroside

1-O-(Z-tetracos-17-enyl)-2,3-di-O-(beta-D-xylopyranosyl)-sn-glycerol|trikentroside

C37H70O11 (690.491787)


   
   

1-O-[alpha-L-rhamnopyranosyl]-23-acetoxyimberbic acid 29-methyl ester

1-O-[alpha-L-rhamnopyranosyl]-23-acetoxyimberbic acid 29-methyl ester

C39H62O10 (690.4342752)


   

23-O-acetyl-7,8-didehydroshengmanol 3-O-beta-D-galactopyranoside

23-O-acetyl-7,8-didehydroshengmanol 3-O-beta-D-galactopyranoside

C38H58O11 (690.3978918)


   

3beta-O-(6-O-methyl-beta-D-glucuronopyranosyl)-olean-12-ene-28,29-dioic acid 29-methyl ester|coryternic acid 3-O-beta-D-glucuronopyranoside 6-O-methyl ester

3beta-O-(6-O-methyl-beta-D-glucuronopyranosyl)-olean-12-ene-28,29-dioic acid 29-methyl ester|coryternic acid 3-O-beta-D-glucuronopyranoside 6-O-methyl ester

C38H58O11 (690.3978918)


   

7,8,16,17-tetrahydro-23R,24R-O-acetylhydroshengmanol-3-O-beta-D-galactopyranoside

7,8,16,17-tetrahydro-23R,24R-O-acetylhydroshengmanol-3-O-beta-D-galactopyranoside

C38H58O11 (690.3978918)


   

3alpha-trans-feruloyloxy-2alpha-O-acetylurs-12-en-28-oic acid

3alpha-trans-feruloyloxy-2alpha-O-acetylurs-12-en-28-oic acid

C42H58O8 (690.4131468)


   

cucurbitacin F 16-O-(2?-O-acetyl-4?,6?-dideoxy-alpha-allopyranoside)|datiscoside J

cucurbitacin F 16-O-(2?-O-acetyl-4?,6?-dideoxy-alpha-allopyranoside)|datiscoside J

C38H58O11 (690.3978918)


   

7alpha-acetoxy-11alpha-caproyloxy-21R?,23R?-epoxy-1alpha,24S?,25-trihydroxy-21alpha-methoxy-4,4,8-trimethyl-cholesta-14-en-3-one|brujavanone M

7alpha-acetoxy-11alpha-caproyloxy-21R?,23R?-epoxy-1alpha,24S?,25-trihydroxy-21alpha-methoxy-4,4,8-trimethyl-cholesta-14-en-3-one|brujavanone M

C39H62O10 (690.4342752)


   
   

Cloversaponin II methyl ester

Cloversaponin II methyl ester

C38H58O11 (690.3978918)


   

butyl 6-O-hexadecanoyl-4-O-butanoylneohesperidoside

butyl 6-O-hexadecanoyl-4-O-butanoylneohesperidoside

C36H66O12 (690.4554036)


   

saponin A 4)-beta-D-xylopyranoside>|saponin A [stigmasta-5,22-diene-3beta-O-alpha-L-rhamnopyranosyl(1 -> 4)-beta-D-xylopyranoside]

saponin A 4)-beta-D-xylopyranoside>|saponin A [stigmasta-5,22-diene-3beta-O-alpha-L-rhamnopyranosyl(1 -> 4)-beta-D-xylopyranoside]

C40H66O9 (690.4706586000001)


   
   

MONENSIN SODIUM (monensin A is shown)

MONENSIN SODIUM (monensin A is shown)

C37H63NaO10 (690.4318698000001)


   

PG(12:0/18:2(9Z,12Z))

1-dodecanoyl-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(13:0/17:2(9Z,12Z))

1-tridecanoyl-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(14:1(9Z)/16:1(9Z))

1-(9Z-tetradecenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(15:1(9Z)/15:1(9Z))

1,2-di-(9Z-pentadecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(16:1(9Z)/14:1(9Z))

1-(9Z-hexadecenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(17:2(9Z,12Z)/13:0)

1-(9Z,12Z-heptadecadienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(18:2(9Z,12Z)/12:0)

1-(9Z,12Z-octadecadienoyl)-2-dodecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG(P-16:0/15:1(9Z))

1-(1Z-hexadecenyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O9P (690.4835446)


   

PA(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(9Z-tetradecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PA(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PA(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PA(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PA(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

PG 30:2

1-(9Z,12Z-heptadecadienoyl)-2-tridecanoyl-glycero-3-phospho-(1-sn-glycerol)

C36H67O10P (690.4471612)


   

PG O-31:2

1-(1Z-hexadecenyl)-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C37H71O9P (690.4835446)


   

PA 36:7

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H63O8P (690.4260328)


   

Butyl 4-O-butanoyl-6-O-hexadecanoyl-neohesperidoside

1-O-(4-O-butanoyl-alpha-L-rhamnopyranosyl-(1-2)-6-O-hexadecanoyl-beta-D-glucopyranosyl)-butanol

C36H66O12 (690.4554036)


   

(S)-3,3-bis-(2,4,6-Triisopropylphenyl)-1,1-bi-2-naphthol

(S)-3,3-bis-(2,4,6-Triisopropylphenyl)-1,1-bi-2-naphthol

C50H58O2 (690.4436568)


   

(S)-3,3-Bis(2,4,6-triisopropylphenyl)-[1,1-binaphthalene]-2,2-diol

(S)-3,3-Bis(2,4,6-triisopropylphenyl)-[1,1-binaphthalene]-2,2-diol

C50H58O2 (690.4436568)


   

Benzoic acid, 4-(17-((2-(1,1-dioxido-4-thiomorpholinyl)ethyl)amino)-28-norlupa-2,20(29)-dien-3-yl)-

Benzoic acid, 4-(17-((2-(1,1-dioxido-4-thiomorpholinyl)ethyl)amino)-28-norlupa-2,20(29)-dien-3-yl)-

C42H62N2O4S (690.4430052)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents

   

Hederagenin base-2H + 1O, O-AcetylHex

Hederagenin base-2H + 1O, O-AcetylHex

C38H58O11 (690.3978918)


   

1-18:3-2-18:3-Phosphatidic acid

1-18:3-2-18:3-Phosphatidic acid

C39H63O8P-2 (690.4260328)


   
   
   
   
   
   
   
   
   
   
   
   
   

PA(14:0/5-iso PGF2VI)

PA(14:0/5-iso PGF2VI)

C35H63O11P (690.4107778)


   

PA(5-iso PGF2VI/14:0)

PA(5-iso PGF2VI/14:0)

C35H63O11P (690.4107778)


   

PA(i-14:0/5-iso PGF2VI)

PA(i-14:0/5-iso PGF2VI)

C35H63O11P (690.4107778)


   

PA(5-iso PGF2VI/i-14:0)

PA(5-iso PGF2VI/i-14:0)

C35H63O11P (690.4107778)


   

PA(P-16:0/18:1(12Z)-2OH(9,10))

PA(P-16:0/18:1(12Z)-2OH(9,10))

C37H71O9P (690.4835446)


   

PA(18:1(12Z)-2OH(9,10)/P-16:0)

PA(18:1(12Z)-2OH(9,10)/P-16:0)

C37H71O9P (690.4835446)


   

[2,5-Dimethyl-5-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphate

[2,5-Dimethyl-5-(octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphate

C38H63N2O7P (690.4372658)


   

Veraguamide G

Veraguamide G

C37H62N4O8 (690.4567412)


A natural product found in Symploca hydnoides.

   

2-[[(2R)-2-[(E)-7-carboxy-5-oxohept-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-carboxy-5-oxohept-6-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H61NO11P+ (690.3982026)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyoct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] tetradecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] tetradecanoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-heptadec-9-enoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] decanoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-octadec-9-enoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] undecanoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] pentadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] pentadecanoate

C37H71O9P (690.4835446)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] tridecanoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] dodecanoate

C37H71O9P (690.4835446)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

C37H71O9P (690.4835446)


   

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyoctadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxydodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]dec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   
   
   
   
   
   

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C39H62O10 (690.4342752)


   

[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyoctyl] 2-(trimethylazaniumyl)ethyl phosphate

C39H67N2O6P (690.4736492)


   

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C36H67O10P (690.4471612)


   

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C36H67O10P (690.4471612)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C36H67O10P (690.4471612)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C36H67O10P (690.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C36H67O10P (690.4471612)


   

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C36H67O10P (690.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C36H67O10P (690.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C39H63O8P (690.4260328)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (Z)-pentadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-pentadec-9-enoyl]oxypropyl] (Z)-pentadec-9-enoate

C36H67O10P (690.4471612)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C36H67O10P (690.4471612)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C39H63O8P (690.4260328)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C39H63O8P (690.4260328)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C39H63O8P (690.4260328)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C36H67O10P (690.4471612)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C39H63O8P (690.4260328)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C39H63O8P (690.4260328)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C36H67O10P (690.4471612)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (8Z,11Z,14Z)-heptadeca-8,11,14-trienoate

C44H66O6 (690.4859136)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C44H66O6 (690.4859136)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoate

C44H66O6 (690.4859136)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H63O8P (690.4260328)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H63O8P (690.4260328)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H63O8P (690.4260328)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-hexadec-9-enoate

C36H67O10P (690.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,12E)-octadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C39H63O8P (690.4260328)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-hexadec-7-enoate

C36H67O10P (690.4471612)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H63O8P (690.4260328)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-hexadec-7-enoate

C36H67O10P (690.4471612)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-pentadec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (E)-pentadec-9-enoate

C36H67O10P (690.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C36H67O10P (690.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C39H63O8P (690.4260328)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H63O8P (690.4260328)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C39H63O8P (690.4260328)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C36H67O10P (690.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C36H67O10P (690.4471612)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C36H67O10P (690.4471612)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H63O8P (690.4260328)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C36H67O10P (690.4471612)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (2E,4E)-octadeca-2,4-dienoate

C36H67O10P (690.4471612)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C36H67O10P (690.4471612)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C39H63O8P (690.4260328)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (6E,9E)-octadeca-6,9-dienoate

C36H67O10P (690.4471612)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C39H63O8P (690.4260328)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C39H63O8P (690.4260328)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C39H63O8P (690.4260328)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-hexadec-9-enoate

C36H67O10P (690.4471612)


   

[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C39H62O10 (690.4342752)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate

C39H63O8P (690.4260328)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C36H67O10P (690.4471612)


   

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(E)-tetradec-9-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C39H62O10 (690.4342752)


   

[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[(7E,9E)-tetradeca-7,9-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C39H62O10 (690.4342752)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C36H67O10P (690.4471612)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H61NO8P+ (690.4134576)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (9E,11E)-octadeca-9,11-dienoate

C36H67O10P (690.4471612)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C36H67O10P (690.4471612)


   

2-[carboxy-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO8+ (690.4944668)


   

2-[carboxy-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO8+ (690.4944668)


   

2-[carboxy-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO8+ (690.4944668)


   

2-[carboxy-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C40H68NO8+ (690.4944668)


   

TG(41:9)

TG(18:4_11:3_12:2)

C44H66O6 (690.4859136)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/17:1 or PG O-14:1/17:1

PG P-14:0/17:1 or PG O-14:1/17:1

C37H71O9P (690.4835446)


   
   
   

PG P-16:0/15:1 or PG O-16:1/15:1

PG P-16:0/15:1 or PG O-16:1/15:1

C37H71O9P (690.4835446)


   
   

PG P-16:1/15:0 or PG O-16:2/15:0

PG P-16:1/15:0 or PG O-16:2/15:0

C37H71O9P (690.4835446)


   
   

PG P-18:1/13:0 or PG O-18:2/13:0

PG P-18:1/13:0 or PG O-18:2/13:0

C37H71O9P (690.4835446)


   
   

PG P-20:1/11:0 or PG O-20:2/11:0

PG P-20:1/11:0 or PG O-20:2/11:0

C37H71O9P (690.4835446)


   
   

PG P-31:1 or PG O-31:2

PG P-31:1 or PG O-31:2

C37H71O9P (690.4835446)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

(2s,3r,4s,5r)-2-[(2r)-3-[(17z)-tetracos-17-en-1-yloxy]-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol

(2s,3r,4s,5r)-2-[(2r)-3-[(17z)-tetracos-17-en-1-yloxy]-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol

C37H70O11 (690.491787)


   

(3as,8as)-7-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3as,8as)-3a-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-7-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

(3as,8as)-7-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3as,8as)-3a-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-7-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

C44H50N8 (690.4158219999999)


   
   

(3ar,8ar)-7-[(3ar,8ar)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

(3ar,8ar)-7-[(3ar,8ar)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3as,8as)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

C44H50N8 (690.4158219999999)


   

2-{[19-butoxy-8-(6-hydroxy-6-methylhept-4-en-2-yl)-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0¹,¹³.0⁴,¹².0⁵,⁹]nonadec-2-en-16-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[19-butoxy-8-(6-hydroxy-6-methylhept-4-en-2-yl)-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0¹,¹³.0⁴,¹².0⁵,⁹]nonadec-2-en-16-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O9 (690.4706586000001)


   

(2s,3r,4s,5r)-2-[(2r)-3-(tetracos-17-en-1-yloxy)-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol

(2s,3r,4s,5r)-2-[(2r)-3-(tetracos-17-en-1-yloxy)-2-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}propoxy]oxane-3,4,5-triol

C37H70O11 (690.491787)


   

(2r,11s)-5,14-bis[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-19,24-dimethyl-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4(9),5,7,13(18),14,16-hexaene

(2r,11s)-5,14-bis[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-19,24-dimethyl-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4(9),5,7,13(18),14,16-hexaene

C44H50N8 (690.4158219999999)


   

(3as,8as)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3ar,8ar)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

(3as,8as)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-3a-[(3ar,8ar)-7-[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

C44H50N8 (690.4158219999999)


   

21,24-dimethyl-5,14-bis({1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl})-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4,6,8,13(18),14,16-hexaene

21,24-dimethyl-5,14-bis({1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl})-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4,6,8,13(18),14,16-hexaene

C44H50N8 (690.4158219999999)


   

3-[({[(1s)-1-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)(sulfo)amino]-n-(5-carbamimidamidopentyl)undecanimidic acid

3-[({[(1s)-1-[(4-carbamimidamidobutyl)-c-hydroxycarbonimidoyl]-3-methylbutyl]-c-hydroxycarbonimidoyl}methyl)(sulfo)amino]-n-(5-carbamimidamidopentyl)undecanimidic acid

C30H62N10O6S (690.4574272)


   

[(2r,3s,4s,5r,6r)-5-{[(2r,3r,4s,5r,6s)-5-(butanoyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-butoxy-3,4-dihydroxyoxan-2-yl]methyl hexadecanoate

[(2r,3s,4s,5r,6r)-5-{[(2r,3r,4s,5r,6s)-5-(butanoyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-butoxy-3,4-dihydroxyoxan-2-yl]methyl hexadecanoate

C36H66O12 (690.4554036)


   

(1r,3as,8r,9as,11ar)-7-(acetyloxy)-1-[(2r,6r)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

(1r,3as,8r,9as,11ar)-7-(acetyloxy)-1-[(2r,6r)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

C39H62O10 (690.4342752)


   

(2r,3r,4s,5s,6r)-2-{[(1r,4s,5s,8r,9r,12s,13s,16s,19r)-19-butoxy-8-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0¹,¹³.0⁴,¹².0⁵,⁹]nonadec-2-en-16-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,4s,5s,8r,9r,12s,13s,16s,19r)-19-butoxy-8-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0¹,¹³.0⁴,¹².0⁵,⁹]nonadec-2-en-16-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C40H66O9 (690.4706586000001)


   

22-hydroxy-1,2,6,6,10,19-hexamethyl-16-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-21-oxahexacyclo[12.11.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁸,²³]pentacos-14-en-8-yl acetate

22-hydroxy-1,2,6,6,10,19-hexamethyl-16-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-21-oxahexacyclo[12.11.0.0²,¹¹.0⁵,¹⁰.0¹⁵,²³.0¹⁸,²³]pentacos-14-en-8-yl acetate

C38H58O11 (690.3978918)


   

(5-{[5-(butanoyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-butoxy-3,4-dihydroxyoxan-2-yl)methyl hexadecanoate

(5-{[5-(butanoyloxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-6-butoxy-3,4-dihydroxyoxan-2-yl)methyl hexadecanoate

C36H66O12 (690.4554036)


   

8-hydroxy-3,10,13-triisopropyl-2,7,12-trimethyl-6-(pent-4-en-1-yl)-16-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

8-hydroxy-3,10,13-triisopropyl-2,7,12-trimethyl-6-(pent-4-en-1-yl)-16-(sec-butyl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C37H62N4O8 (690.4567412)


   

(1r,3r)-1-[(2s)-3,3-dimethyloxiran-2-yl]-3-[(1r,3r,6s,8r,12r,13r,15r,16r)-13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-15-yl]butyl acetate

(1r,3r)-1-[(2s)-3,3-dimethyloxiran-2-yl]-3-[(1r,3r,6s,8r,12r,13r,15r,16r)-13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-15-yl]butyl acetate

C38H58O11 (690.3978918)


   

(2s,3r,4r,5r,6s)-2-{[(3r,4r,5r,6s)-6-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(3r,4r,5r,6s)-6-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C40H66O9 (690.4706586000001)


   

7-(acetyloxy)-1-[2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

7-(acetyloxy)-1-[2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,3bh,4h,5h,5ah,7h,8h,9h,11h-cyclopenta[a]phenanthren-8-yl 1-methyl 3-hydroxy-3-methylpentanedioate

C39H62O10 (690.4342752)


   

1-methyl-7-{1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl}-3a-(1-methyl-3a-{1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl}-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-7-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

1-methyl-7-{1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl}-3a-(1-methyl-3a-{1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl}-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-7-yl)-2h,3h,8h,8ah-pyrrolo[2,3-b]indole

C44H50N8 (690.4158219999999)


   

1-(3,3-dimethyloxiran-2-yl)-3-(13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-15-yl)butyl acetate

1-(3,3-dimethyloxiran-2-yl)-3-(13-hydroxy-7,7,12,16-tetramethyl-14-oxo-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadec-10-en-15-yl)butyl acetate

C38H58O11 (690.3978918)


   

bis(methyl (1r,2r,5s,8s,14r,15r)-5-ethyl-2-(hydroxymethyl)-6-azapentacyclo[9.5.1.0¹,⁵.0²,⁸.0¹⁴,¹⁷]heptadec-11(17)-ene-15-carboxylate)

bis(methyl (1r,2r,5s,8s,14r,15r)-5-ethyl-2-(hydroxymethyl)-6-azapentacyclo[9.5.1.0¹,⁵.0²,⁸.0¹⁴,¹⁷]heptadec-11(17)-ene-15-carboxylate)

C42H62N2O6 (690.4607632)


   

2-[(6-{[1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(6-{[1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxyoxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C40H66O9 (690.4706586000001)


   

(3s,6r,7s,10s,13s,16s,21as)-16-[(2s)-butan-2-yl]-8-hydroxy-3,10,13-triisopropyl-2,7,12-trimethyl-6-(pent-4-en-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

(3s,6r,7s,10s,13s,16s,21as)-16-[(2s)-butan-2-yl]-8-hydroxy-3,10,13-triisopropyl-2,7,12-trimethyl-6-(pent-4-en-1-yl)-3h,6h,7h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-f]1,10-dioxa-4,7,13,16-tetraazacyclononadecane-1,4,11,14,17-pentone

C37H62N4O8 (690.4567412)


   

(1s,2s,10r,11r)-5,14-bis[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-21,24-dimethyl-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4,6,8,13(18),14,16-hexaene

(1s,2s,10r,11r)-5,14-bis[(3ar,8ar)-1-methyl-2h,3h,8h,8ah-pyrrolo[2,3-b]indol-3a-yl]-21,24-dimethyl-3,12,21,24-tetraazahexacyclo[9.7.3.3²,¹⁰.0¹,¹⁰.0⁴,⁹.0¹³,¹⁸]tetracosa-4,6,8,13(18),14,16-hexaene

C44H50N8 (690.4158219999999)


   

methyl (2r,4as,6as,6br,8ar,9r,10s,12s,12ar,12bs,14bs)-9-[(acetyloxy)methyl]-10-hydroxy-2,4a,6a,6b,9,12a-hexamethyl-12-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2-carboxylate

methyl (2r,4as,6as,6br,8ar,9r,10s,12s,12ar,12bs,14bs)-9-[(acetyloxy)methyl]-10-hydroxy-2,4a,6a,6b,9,12a-hexamethyl-12-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2-carboxylate

C39H62O10 (690.4342752)