Exact Mass: 688.3544

Exact Mass Matches: 688.3544

Found 159 metabolites which its exact mass value is equals to given mass value 688.3544, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

   

2-O-sulfo-2-stearoyl-alpha,alpha-trehalose

2-O-sulfo-2-stearoyl-alpha,alpha-trehalose

C30H56O15S (688.334)


   

12-O-Retinoylphorbol-13-acetate

13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0^{2,6}.0^{11,13}]pentadeca-3,8-dien-14-yl 3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoate

C42H56O8 (688.3975)


   

PA(12:0/PGE2)

PA(12:0/PGE2)

C35H61O11P (688.3951)


PA(12:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGE2), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(PGE2/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/12:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/PGD2)

[(2R)-3-(dodecanoyloxy)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(12:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGD2), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(PGD2/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/12:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-(dodecanoyloxy)-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/12:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/5-iso PGF2VI)

[(2R)-2-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(14:1(9Z)/5-iso PGF2VI) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/5-iso PGF2VI), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-iso Prostaglandin F2alpha-VI at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(5-iso PGF2VI/14:1(9Z))

[(2R)-3-{[(3Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3R)-3-hydroxyoct-1-en-1-yl]cyclopentyl]pent-3-enoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(5-iso PGF2VI/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(5-iso PGF2VI/14:1(9Z)), in particular, consists of one chain of one 5-iso Prostaglandin F2alpha-VI at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGE2)

[(2R)-2-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(i-12:0/PGE2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGE2), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGE2/i-12:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(PGE2/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGE2/i-12:0), in particular, consists of one chain of one Prostaglandin E2 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/PGD2)

[(2R)-2-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(i-12:0/PGD2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGD2), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(PGD2/i-12:0)

[(2R)-3-{[(5Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3-oxocyclopentyl]hept-5-enoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(PGD2/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGD2/i-12:0), in particular, consists of one chain of one Prostaglandin D2 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C35H61O11P (688.3951)


PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0), in particular, consists of one chain of one Lipoxin A4 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

Methylcimicifugoside

Methylcimicifugoside

C38H56O11 (688.3822)


   

Fumonisin Py4

Fumonisin Py4

C34H56O14 (688.367)


CONFIDENCE isolated standard

   

reveromycin D 4-methyl ester

reveromycin D 4-methyl ester

C38H56O11 (688.3822)


   

4-O-methylbutin-7-O-[(6->1)-3,11-dimethyl-7-hydroxymethylenedodecanyl]-beta-D-glucopyranoside

4-O-methylbutin-7-O-[(6->1)-3,11-dimethyl-7-hydroxymethylenedodecanyl]-beta-D-glucopyranoside

C37H52O12 (688.3459)


   

Xyloccensin F

Xyloccensin F

C37H52O12 (688.3459)


   

datiscoside H

datiscoside H

C38H56O11 (688.3822)


   
   

dysoxylumolide C

dysoxylumolide C

C36H48O13 (688.3095)


   

ecdysterone 22,25-di-O-benzoate

ecdysterone 22,25-di-O-benzoate

C41H52O9 (688.3611)


   

methyl (2S)-2-[(2R,3E,12bS)-3-ethylidene-2,4,6,7,12,12b-hexahydro-1H-indolo[2,3-a]quinolizin-2-yl]-3-[(2S,3R)-3-ethyl-2-[(1R)-1-(hydroxymethyl)-2-methoxy-2-oxo-ethyl]-1,2,3,4-tetrahydroindolo[2,3-a]quinolizin-5-ium-7-yl]propanoate|moandaensine

methyl (2S)-2-[(2R,3E,12bS)-3-ethylidene-2,4,6,7,12,12b-hexahydro-1H-indolo[2,3-a]quinolizin-2-yl]-3-[(2S,3R)-3-ethyl-2-[(1R)-1-(hydroxymethyl)-2-methoxy-2-oxo-ethyl]-1,2,3,4-tetrahydroindolo[2,3-a]quinolizin-5-ium-7-yl]propanoate|moandaensine

C42H48N4O5 (688.3625)


   

reveromycin E

reveromycin E

C38H56O11 (688.3822)


   
   

2-{[5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-8-butanoyl-6-chromenyl]-methyl}-3,5-dihydroxy-4-methyl-4-(3,7-dimethyl-2,6-octadienyl)-6-butanoyl-2,5-cyclohexadien-1-one

2-{[5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-8-butanoyl-6-chromenyl]-methyl}-3,5-dihydroxy-4-methyl-4-(3,7-dimethyl-2,6-octadienyl)-6-butanoyl-2,5-cyclohexadien-1-one

C42H56O8 (688.3975)


   

cucurbitacin F 16-O-(2?-O-acetyl-4?,6?-dideoxy-alpha-gluco-hex-3?-ulopyranoside)|datiscoside K

cucurbitacin F 16-O-(2?-O-acetyl-4?,6?-dideoxy-alpha-gluco-hex-3?-ulopyranoside)|datiscoside K

C38H56O11 (688.3822)


   

satosporin A

satosporin A

C34H56O14 (688.367)


   

dysoxylumasin C

dysoxylumasin C

C36H48O13 (688.3095)


   
   

rel-(4aR,6R,6aR,7S,8S,10R,11aR,12R,12aS,12bR)-5,6,6a,7,8,10,11a,12,12a-decahydro-11a-(1-hydroxy-1-methylethyl)-3,3,6a,9-tetramethyl-1H-azuleno[5,5-f][1,3]benzodioxin-6,7,8,10,12,12b(4aH)-hexol 6,7,12-triacetate 8-benzoate|sumataxin C

rel-(4aR,6R,6aR,7S,8S,10R,11aR,12R,12aS,12bR)-5,6,6a,7,8,10,11a,12,12a-decahydro-11a-(1-hydroxy-1-methylethyl)-3,3,6a,9-tetramethyl-1H-azuleno[5,5-f][1,3]benzodioxin-6,7,8,10,12,12b(4aH)-hexol 6,7,12-triacetate 8-benzoate|sumataxin C

C36H48O13 (688.3095)


   
   
   

furost-25(27)-en-1beta,2beta,3beta,4beta,5beta,7alpha,22,26-octaol-6-one 26-O-beta-D-glucopyranoside

furost-25(27)-en-1beta,2beta,3beta,4beta,5beta,7alpha,22,26-octaol-6-one 26-O-beta-D-glucopyranoside

C33H52O15 (688.3306)


   
   
   

reveromycin G

reveromycin G

C38H56O11 (688.3822)


   

Pleiokomenine B

Pleiokomenine B

C43H52N4O4 (688.3988)


   

(R)-Xylyl-PHANEPhos

(R)-Xylyl-PHANEPhos

C48H50P2 (688.3388)


   

Trityl Olmesartan Acid

Trityl Olmesartan Acid

C43H40N6O3 (688.3162)


   

Uremic Pentapeptide (U5-Peptide)

Uremic Pentapeptide (U5-Peptide)

C32H48N8O9 (688.3544)


   

Tricyclo[8.2.2.24,7]hexadeca-1(12),4,6,10,13,15-hexaene-5,11-diylbis[bis(3,5-dimethylphenyl)phosphine]

Tricyclo[8.2.2.24,7]hexadeca-1(12),4,6,10,13,15-hexaene-5,11-diylbis[bis(3,5-dimethylphenyl)phosphine]

C48H50P2 (688.3388)


   

Bis(tricyclohexylphosphine)dichloronickel

Bis(tricyclohexylphosphine)dichloronickel

C36H66Cl2NiP2 (688.337)


   

Vionactane

Vionactane

C25H46N13O10+3 (688.349)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

(R)-1-(threo-4-Hydroxy-L-3,6-diaminohexanoic acid)-6-[L-2-(2-amino-1,4,5,6-tetrahydro-4-pyrimidinyl)glycine]viomycin

(R)-1-(threo-4-Hydroxy-L-3,6-diaminohexanoic acid)-6-[L-2-(2-amino-1,4,5,6-tetrahydro-4-pyrimidinyl)glycine]viomycin

C25H46N13O10+3 (688.349)


   

Phorbol-12-retinoate-13-acetate

Phorbol-12-retinoate-13-acetate

C42H56O8 (688.3975)


D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters

   

PA(i-12:0/PGE2)

PA(i-12:0/PGE2)

C35H61O11P (688.3951)


   

PA(PGE2/i-12:0)

PA(PGE2/i-12:0)

C35H61O11P (688.3951)


   

PA(i-12:0/PGD2)

PA(i-12:0/PGD2)

C35H61O11P (688.3951)


   

PA(PGD2/i-12:0)

PA(PGD2/i-12:0)

C35H61O11P (688.3951)


   
   
   
   
   

PA(14:1(9Z)/5-iso PGF2VI)

PA(14:1(9Z)/5-iso PGF2VI)

C35H61O11P (688.3951)


   

PA(5-iso PGF2VI/14:1(9Z))

PA(5-iso PGF2VI/14:1(9Z))

C35H61O11P (688.3951)


   

PA(12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C35H61O11P (688.3951)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/12:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/12:0)

C35H61O11P (688.3951)


   

PA(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PA(i-12:0/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C35H61O11P (688.3951)


   

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

PA(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/i-12:0)

C35H61O11P (688.3951)


   

Viomycin(3+)

Viomycin(3+)

C25H46N13O10+3 (688.349)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

N-[[(3S,9R,10S)-16-[[(1,3-benzodioxol-5-ylamino)-oxomethyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methyl-2-phenylacetamide

N-[[(3S,9R,10S)-16-[[(1,3-benzodioxol-5-ylamino)-oxomethyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methyl-2-phenylacetamide

C38H48N4O8 (688.3472)


   

(9Z)-17-hydroxyoctadec-9-enoate 17-O-diacetylsophoroside 1,4-lactone

(9Z)-17-hydroxyoctadec-9-enoate 17-O-diacetylsophoroside 1,4-lactone

C34H56O14 (688.367)


   

(1R,9R,16R,21S)-6-[[(16R,21S)-18-methoxycarbonyl-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-trien-6-yl]methyl]-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylic acid

(1R,9R,16R,21S)-6-[[(16R,21S)-18-methoxycarbonyl-2-methyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-trien-6-yl]methyl]-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylic acid

C43H52N4O4 (688.3988)


   

Smgdg O-18:5_7:0

Smgdg O-18:5_7:0

C34H56O12S (688.3492)


   

Smgdg O-22:5_3:0

Smgdg O-22:5_3:0

C34H56O12S (688.3492)


   

Smgdg O-20:5_5:0

Smgdg O-20:5_5:0

C34H56O12S (688.3492)


   

Dgdg O-16:4_3:0

Dgdg O-16:4_3:0

C34H56O14 (688.367)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C33H52O15 (688.3306)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C33H53O13P (688.3224)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C33H53O13P (688.3224)


   

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C33H53O13P (688.3224)


   

Viomycin(3+)

Viomycin(3+)

C25H46N13O10 (688.349)


Viomycin protonated to pH 7.3

   
   
   
   
   
   
   
   
   

PA 20:1/12:3;O3

PA 20:1/12:3;O3

C35H61O11P (688.3951)


   

PA 20:2/12:2;O3

PA 20:2/12:2;O3

C35H61O11P (688.3951)


   

PA 22:6/13:3;O

PA 22:6/13:3;O

C38H57O9P (688.374)


   
   
   
   

PG P-16:0/13:4;O2

PG P-16:0/13:4;O2

C35H61O11P (688.3951)


   

PG P-16:1/13:3;O2

PG P-16:1/13:3;O2

C35H61O11P (688.3951)


   

PG P-20:0/9:4;O2

PG P-20:0/9:4;O2

C35H61O11P (688.3951)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PEth 33:9;O

PEth 33:9;O

C38H57O9P (688.374)


   
   

ST 28:1;O8;GlcA

ST 28:1;O8;GlcA

C34H56O14 (688.367)


   

ST 29:0;O7;GlcA

ST 29:0;O7;GlcA

C35H60O13 (688.4034)


   

ST 29:1;O8;Hex

ST 29:1;O8;Hex

C35H60O13 (688.4034)


   

20,21-bis(acetyloxy)-6-(furan-3-yl)-4,12,19-trihydroxy-5,11,15,16-tetramethyl-3-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-16-yl 2-methylbutanoate

20,21-bis(acetyloxy)-6-(furan-3-yl)-4,12,19-trihydroxy-5,11,15,16-tetramethyl-3-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-16-yl 2-methylbutanoate

C36H48O13 (688.3095)


   

3-(1-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-4,6,7,10,12-pentamethyl-dodecahydro-3h-naphtho[1,2-c]oxocine-1,8-dione

3-(1-{[3,5-dihydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-4,6,7,10,12-pentamethyl-dodecahydro-3h-naphtho[1,2-c]oxocine-1,8-dione

C34H56O14 (688.367)


   

(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-9-pentyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-9-pentyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)


   

(2r,3s,6s)-2-{[(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-7,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-10-oxo-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyl-5-oxooxan-3-yl acetate

(2r,3s,6s)-2-{[(1r,2r,3as,3bs,7s,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-7,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-10-oxo-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyl-5-oxooxan-3-yl acetate

C38H56O11 (688.3822)


   

methyl (2r)-2-[(2s,3r)-7-[(2s)-2-[(2r,3e,12bs)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-3-methoxy-3-oxopropyl]-3-ethyl-1h,2h,3h,4h-indolo[2,3-a]quinolizin-2-yl]-3-hydroxypropanoate

methyl (2r)-2-[(2s,3r)-7-[(2s)-2-[(2r,3e,12bs)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-3-methoxy-3-oxopropyl]-3-ethyl-1h,2h,3h,4h-indolo[2,3-a]quinolizin-2-yl]-3-hydroxypropanoate

C42H48N4O5 (688.3625)


   

2-[(2e)-but-2-en-2-yl]-10-[(4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(4r,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

2-[(2e)-but-2-en-2-yl]-10-[(4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(4r,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C39H48N2O9 (688.336)


   

(1s,2r,7r,9r,10r,11s,12s,15r,17r,18r)-9,11,18-tris(acetyloxy)-2,15-dihydroxy-17-(2-hydroxypropan-2-yl)-5,5,10,14-tetramethyl-4,6-dioxatetracyclo[8.8.0.0²,⁷.0¹³,¹⁷]octadec-13-en-12-yl benzoate

(1s,2r,7r,9r,10r,11s,12s,15r,17r,18r)-9,11,18-tris(acetyloxy)-2,15-dihydroxy-17-(2-hydroxypropan-2-yl)-5,5,10,14-tetramethyl-4,6-dioxatetracyclo[8.8.0.0²,⁷.0¹³,¹⁷]octadec-13-en-12-yl benzoate

C36H48O13 (688.3095)


   

(2e,4s,5s,6e,8e)-10-[(2r,5s,7r,8s)-2-[(1s,2e,4e)-5-carboxy-1-[(3-carboxypropanoyl)oxy]-4-methylpenta-2,4-dien-1-yl]-2-hexyl-8-methyl-1,6-dioxaspiro[4.5]decan-7-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

(2e,4s,5s,6e,8e)-10-[(2r,5s,7r,8s)-2-[(1s,2e,4e)-5-carboxy-1-[(3-carboxypropanoyl)oxy]-4-methylpenta-2,4-dien-1-yl]-2-hexyl-8-methyl-1,6-dioxaspiro[4.5]decan-7-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)


   

methyl (1s,2r,5s,12s,15e,24r,25r,26r,28s,40s)-15-ethylidene-34-methoxy-24,30,39-trimethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,10,21,29(37),31,33,35-octaene-40-carboxylate

methyl (1s,2r,5s,12s,15e,24r,25r,26r,28s,40s)-15-ethylidene-34-methoxy-24,30,39-trimethyl-4,6-dioxa-10,17,30,39-tetraazaundecacyclo[26.10.1.1¹⁴,²⁰.0²,²⁶.0⁵,²⁵.0⁷,²³.0⁹,²¹.0¹¹,²⁰.0¹²,¹⁷.0²⁹,³⁷.0³¹,³⁶]tetraconta-7(23),8,10,21,29(37),31,33,35-octaene-40-carboxylate

C42H48N4O5 (688.3625)


   

10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-9-pentyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-[(4-methoxy-4-oxobutanoyl)oxy]-3-methyl-9-pentyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)


   

(1r,2r,3z,8s,9s,10r,11s,12s,13r,15s,18s,19s)-18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl (2s)-2-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-3-methylbutanoate

(1r,2r,3z,8s,9s,10r,11s,12s,13r,15s,18s,19s)-18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl (2s)-2-{[(2r)-2-hydroxy-3-methylbutanoyl]oxy}-3-methylbutanoate

C36H48O13 (688.3095)


   

methyl (1r,10r,44r,45r)-25-methoxy-4,13-dioxa-17,27,30,40-tetraazatridecacyclo[28.13.1.1¹⁰,¹⁷.0¹,⁵.0⁶,²⁹.0⁸,²⁸.0¹⁰,¹⁴.0²⁰,²⁸.0²¹,²⁶.0³³,⁴¹.0³³,⁴⁴.0³⁴,³⁹.0²⁰,⁴⁵]pentatetraconta-21,23,25,34,36,38,41-heptaene-42-carboxylate

methyl (1r,10r,44r,45r)-25-methoxy-4,13-dioxa-17,27,30,40-tetraazatridecacyclo[28.13.1.1¹⁰,¹⁷.0¹,⁵.0⁶,²⁹.0⁸,²⁸.0¹⁰,¹⁴.0²⁰,²⁸.0²¹,²⁶.0³³,⁴¹.0³³,⁴⁴.0³⁴,³⁹.0²⁰,⁴⁵]pentatetraconta-21,23,25,34,36,38,41-heptaene-42-carboxylate

C42H48N4O5 (688.3625)


   

4',5'-bis(acetyloxy)-3',4-dihydroxy-7-methoxy-2,3',5a,6,6',9',9b-heptamethyl-8,10'-dioxo-2,3a,4,5,9,9a-hexahydro-1h-11'-oxaspiro[cyclopenta[a]naphthalene-3,2'-tricyclo[7.2.1.0¹,⁶]dodecan]-7'-yl acetate

4',5'-bis(acetyloxy)-3',4-dihydroxy-7-methoxy-2,3',5a,6,6',9',9b-heptamethyl-8,10'-dioxo-2,3a,4,5,9,9a-hexahydro-1h-11'-oxaspiro[cyclopenta[a]naphthalene-3,2'-tricyclo[7.2.1.0¹,⁶]dodecan]-7'-yl acetate

C37H52O12 (688.3459)


   

2-{[1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-7,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-10-oxo-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyl-5-oxooxan-3-yl acetate

2-{[1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-7,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-10-oxo-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-methyl-5-oxooxan-3-yl acetate

C38H56O11 (688.3822)


   

(1s,2s,4s,6r,7s,8r,9s,12s,13s,14s,15s,16s,17s,18r,20s)-6,14,15,16,17,18,20-heptahydroxy-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-19-one

(1s,2s,4s,6r,7s,8r,9s,12s,13s,14s,15s,16s,17s,18r,20s)-6,14,15,16,17,18,20-heptahydroxy-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-19-one

C33H52O15 (688.3306)


   

(1'r,2s,3s,3'r,3ar,4r,4'r,5'r,5as,6'r,7's,9'r,9as,9bs)-4',5'-bis(acetyloxy)-3',4-dihydroxy-7-methoxy-2,3',5a,6,6',9',9b-heptamethyl-8,10'-dioxo-2,3a,4,5,9,9a-hexahydro-1h-11'-oxaspiro[cyclopenta[a]naphthalene-3,2'-tricyclo[7.2.1.0¹,⁶]dodecan]-7'-yl acetate

(1'r,2s,3s,3'r,3ar,4r,4'r,5'r,5as,6'r,7's,9'r,9as,9bs)-4',5'-bis(acetyloxy)-3',4-dihydroxy-7-methoxy-2,3',5a,6,6',9',9b-heptamethyl-8,10'-dioxo-2,3a,4,5,9,9a-hexahydro-1h-11'-oxaspiro[cyclopenta[a]naphthalene-3,2'-tricyclo[7.2.1.0¹,⁶]dodecan]-7'-yl acetate

C37H52O12 (688.3459)


   

18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl 2-[(2-hydroxy-3-methylbutanoyl)oxy]-3-methylbutanoate

18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl 2-[(2-hydroxy-3-methylbutanoyl)oxy]-3-methylbutanoate

C36H48O13 (688.3095)


   

(1r,2r,3z,8s,9s,10r,11s,12s,13r,15s,18s,19s)-18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl 2-[(2-hydroxy-3-methylbutanoyl)oxy]-3-methylbutanoate

(1r,2r,3z,8s,9s,10r,11s,12s,13r,15s,18s,19s)-18-(furan-3-yl)-8,10-dihydroxy-2,8,12,19-tetramethyl-5,16-dioxo-6,14,17-trioxapentacyclo[10.9.0.0²,⁹.0¹³,¹⁵.0¹³,¹⁹]henicos-3-en-11-yl 2-[(2-hydroxy-3-methylbutanoyl)oxy]-3-methylbutanoate

C36H48O13 (688.3095)


   

(3r,4r,6s,6ar,7s,8ar,10r,12s,12ar,12br)-3-(1-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-4,6,7,10,12-pentamethyl-dodecahydro-3h-naphtho[1,2-c]oxocine-1,8-dione

(3r,4r,6s,6ar,7s,8ar,10r,12s,12ar,12br)-3-(1-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}ethyl)-4,6,7,10,12-pentamethyl-dodecahydro-3h-naphtho[1,2-c]oxocine-1,8-dione

C34H56O14 (688.367)


   

(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13's,14's,15's,16's,17's,18'r,20'r)-14',15',16',17',18',20'-hexahydroxy-5,7',9',13'-tetramethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one

(1's,2r,2's,4s,4's,5s,7's,8'r,9's,12's,13's,14's,15's,16's,17's,18'r,20'r)-14',15',16',17',18',20'-hexahydroxy-5,7',9',13'-tetramethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one

C33H52O15 (688.3306)


   

2-[(2z)-but-2-en-2-yl]-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4s,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

2-[(2z)-but-2-en-2-yl]-10-[(2s,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4s,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C39H48N2O9 (688.336)


   

10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-[(3-carboxypropanoyl)oxy]-9-hexyl-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-[(3-carboxypropanoyl)oxy]-9-hexyl-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)


   

(2s,3s,4s,5r,6r)-6-{[(1s,3as,3bs,5s,5as,7s,9as,11as)-1-[(2s)-2-hydroxy-6-methyl-4-oxoheptan-2-yl]-9a,11a-dimethyl-5-(sulfooxy)-1h,2h,3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(1s,3as,3bs,5s,5as,7s,9as,11as)-1-[(2s)-2-hydroxy-6-methyl-4-oxoheptan-2-yl]-9a,11a-dimethyl-5-(sulfooxy)-1h,2h,3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C33H52O13S (688.3128)


   

14,19-dihydroxy-6,16,27,31-tetramethyl-13,20-bis(prop-1-en-2-yl)-8,17,25-trioxaheptacyclo[16.12.1.1⁷,¹⁰.1²³,²⁶.0²,¹⁶.0⁴,⁶.0²⁷,²⁹]tritriaconta-10(33),18(31),23(32)-triene-3,9,15,24,30-pentone

14,19-dihydroxy-6,16,27,31-tetramethyl-13,20-bis(prop-1-en-2-yl)-8,17,25-trioxaheptacyclo[16.12.1.1⁷,¹⁰.1²³,²⁶.0²,¹⁶.0⁴,⁶.0²⁷,²⁹]tritriaconta-10(33),18(31),23(32)-triene-3,9,15,24,30-pentone

C40H48O10 (688.3247)


   

6,14,15,16,17,18,20-heptahydroxy-7,9,13-trimethyl-6-[3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-19-one

6,14,15,16,17,18,20-heptahydroxy-7,9,13-trimethyl-6-[3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-19-one

C33H52O15 (688.3306)


   

(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-[(3-carboxypropanoyl)oxy]-9-hexyl-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

(2e,4s,5s,6e,8e)-10-[(2r,3s,6s,8s,9r)-8-[(1e,3e)-4-carboxy-3-methylbuta-1,3-dien-1-yl]-9-[(3-carboxypropanoyl)oxy]-9-hexyl-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)


   

14',15',16',17',18',20'-hexahydroxy-5,7',9',13'-tetramethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one

14',15',16',17',18',20'-hexahydroxy-5,7',9',13'-tetramethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5'-oxaspiro[oxane-2,6'-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-19'-one

C33H52O15 (688.3306)


   

(1r,4s)-4-[(4as,6s,8ar)-6-[(2r)-5-bromo-2,6,6-trimethyloxan-2-yl]-8a-methyl-hexahydro-2h-pyrano[3,2-b]pyran-2-yl]-1-[(2r,5r)-5-[2-(acetyloxy)propan-2-yl]-2-methyloxolan-2-yl]-4-hydroxypentyl acetate

(1r,4s)-4-[(4as,6s,8ar)-6-[(2r)-5-bromo-2,6,6-trimethyloxan-2-yl]-8a-methyl-hexahydro-2h-pyrano[3,2-b]pyran-2-yl]-1-[(2r,5r)-5-[2-(acetyloxy)propan-2-yl]-2-methyloxolan-2-yl]-4-hydroxypentyl acetate

C34H57BrO9 (688.3186)


   

9,11,18-tris(acetyloxy)-2,15-dihydroxy-17-(2-hydroxypropan-2-yl)-5,5,10,14-tetramethyl-4,6-dioxatetracyclo[8.8.0.0²,⁷.0¹³,¹⁷]octadec-13-en-12-yl benzoate

9,11,18-tris(acetyloxy)-2,15-dihydroxy-17-(2-hydroxypropan-2-yl)-5,5,10,14-tetramethyl-4,6-dioxatetracyclo[8.8.0.0²,⁷.0¹³,¹⁷]octadec-13-en-12-yl benzoate

C36H48O13 (688.3095)


   

(3s,4r)-9-[(2s)-3-({2-[(1e,3r,4s)-3,4-dihydroxyhept-1-en-1-yl]-6-methoxyphenyl}methoxy)-2-hydroxy-3-methylbutyl]-4,6-dihydroxy-12-methyl-3-(prop-1-en-2-yl)-3,4-dihydro-2h-1,10-dioxatetraphen-5-one

(3s,4r)-9-[(2s)-3-({2-[(1e,3r,4s)-3,4-dihydroxyhept-1-en-1-yl]-6-methoxyphenyl}methoxy)-2-hydroxy-3-methylbutyl]-4,6-dihydroxy-12-methyl-3-(prop-1-en-2-yl)-3,4-dihydro-2h-1,10-dioxatetraphen-5-one

C40H48O10 (688.3247)


   

methyl 2-(3-ethyl-7-{2-[(3e)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-3-methoxy-3-oxopropyl}-1h,2h,3h,4h-indolo[2,3-a]quinolizin-2-yl)-3-hydroxypropanoate

methyl 2-(3-ethyl-7-{2-[(3e)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-3-methoxy-3-oxopropyl}-1h,2h,3h,4h-indolo[2,3-a]quinolizin-2-yl)-3-hydroxypropanoate

C42H48N4O5 (688.3625)


   

(1s,2r,4s,5r,6s,8r,10s,11s,12r,14r,15r,16s,19r,20r,21s)-20,21-bis(acetyloxy)-6-(furan-3-yl)-4,12,19-trihydroxy-5,11,15,16-tetramethyl-3-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-16-yl (2r)-2-methylbutanoate

(1s,2r,4s,5r,6s,8r,10s,11s,12r,14r,15r,16s,19r,20r,21s)-20,21-bis(acetyloxy)-6-(furan-3-yl)-4,12,19-trihydroxy-5,11,15,16-tetramethyl-3-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-16-yl (2r)-2-methylbutanoate

C36H48O13 (688.3095)


   

2-[(2e)-but-2-en-2-yl]-10-[(2r,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4r,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

2-[(2e)-but-2-en-2-yl]-10-[(2r,4s,5s,6s)-4-(dimethylamino)-5-hydroxy-4,6-dimethyloxan-2-yl]-8-[(2r,4r,5s,6r)-4-(dimethylamino)-5-hydroxy-6-methyloxan-2-yl]-11-hydroxy-5-methyl-1-oxatetraphene-4,7,12-trione

C39H48N2O9 (688.336)


   

9-(3-{[2-(3,4-dihydroxyhept-1-en-1-yl)-6-methoxyphenyl]methoxy}-2-hydroxy-3-methylbutyl)-4,6-dihydroxy-12-methyl-3-(prop-1-en-2-yl)-3,4-dihydro-2h-1,10-dioxatetraphen-5-one

9-(3-{[2-(3,4-dihydroxyhept-1-en-1-yl)-6-methoxyphenyl]methoxy}-2-hydroxy-3-methylbutyl)-4,6-dihydroxy-12-methyl-3-(prop-1-en-2-yl)-3,4-dihydro-2h-1,10-dioxatetraphen-5-one

C40H48O10 (688.3247)


   

methyl 4,5-dimethoxy-6-[(1,2,4,5,6-pentamethoxyhexan-3-yl)oxy]-3-{[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

methyl 4,5-dimethoxy-6-[(1,2,4,5,6-pentamethoxyhexan-3-yl)oxy]-3-{[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

C30H56O17 (688.3517)


   

methyl (2s,3s,4s,5r,6s)-4,5-dimethoxy-6-{[(2r,3r,4s,5s)-1,2,4,5,6-pentamethoxyhexan-3-yl]oxy}-3-{[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

methyl (2s,3s,4s,5r,6s)-4,5-dimethoxy-6-{[(2r,3r,4s,5s)-1,2,4,5,6-pentamethoxyhexan-3-yl]oxy}-3-{[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate

C30H56O17 (688.3517)


   

10-(2-{5-carboxy-1-[(3-carboxypropanoyl)oxy]-4-methylpenta-2,4-dien-1-yl}-2-hexyl-8-methyl-1,6-dioxaspiro[4.5]decan-7-yl)-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

10-(2-{5-carboxy-1-[(3-carboxypropanoyl)oxy]-4-methylpenta-2,4-dien-1-yl}-2-hexyl-8-methyl-1,6-dioxaspiro[4.5]decan-7-yl)-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid

C38H56O11 (688.3822)