Exact Mass: 682.4451

Exact Mass Matches: 682.4451

Found 422 metabolites which its exact mass value is equals to given mass value 682.4451, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Cyclopassifloside II

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 15-[5,6-dihydroxy-5-(propan-2-yl)hexan-2-yl]-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C37H62O11 (682.4292)


Cyclopassifloside II is found in fruits. Cyclopassifloside II is a constituent of Passiflora edulis (passion fruit). Constituent of Passiflora edulis (passion fruit). Cyclopassifloside II is found in fruits.

   

PA(15:0/20:4(5Z,8Z,11Z,14Z))

[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O8P (682.4573)


PA(15:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(15:0/20:4(8Z,11Z,14Z,17Z))

[(2R)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-3-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O8P (682.4573)


PA(15:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/15:0)

[(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O8P (682.4573)


PA(20:4(5Z,8Z,11Z,14Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/15:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/15:0)

[(2R)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]-2-(pentadecanoyloxy)propoxy]phosphonic acid

C38H67O8P (682.4573)


PA(20:4(8Z,11Z,14Z,17Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/15:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-(tetradecanoyloxy)propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z)), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z)), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z)), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-[(9Z)-tetradec-9-enoyloxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

[(2R)-2-[(9Z)-tetradec-9-enoyloxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z)), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z)), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z)), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z)), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z)), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z)), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z)), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z)), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z)), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z)), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-3-[(12-methyltridecanoyl)oxy]-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

[(2R)-2-[(12-methyltridecanoyl)oxy]-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(12-methyltridecanoyl)oxy]propoxy]phosphonic acid

C37H63O9P (682.4209)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Methyl sartortuoate

Methyl sartortuoate

C41H62O8 (682.4444)


   
   

Diepoxynyalolide

Diepoxynyalolide

C41H62O8 (682.4444)


   

Methyl tortuoate A

(+)-Methyl tortuoate A

C41H62O8 (682.4444)


   

14-Acetoxy-15-hydroxyirpexan

14-Acetoxy-15-hydroxyirpexan

C38H66O10 (682.4656)


   

Methyl tortuoate B

(+)-Methyl tortuoate B

C41H62O8 (682.4444)


   

Ximaolide A

Ximaolide A

C41H62O8 (682.4444)


   
   

Ximaolide E

Ximaolide E

C41H62O8 (682.4444)


   

Ximaolide D

Ximaolide D

C41H62O8 (682.4444)


   

Rubescensin M

Rubescensin M

C40H58O9 (682.4081)


   
   

Dehydro fucoxanthin acetate

Dehydro fucoxanthin acetate

C44H58O6 (682.4233)


   

N-(17-linolenoyloxy-linolenoyl)-glutamine

N-(17-linolenoyloxy-linolenoyl)-glutamine

C41H66N2O6 (682.4921)


   

bruceajavanone A 7-acetate

bruceajavanone A 7-acetate

C40H58O9 (682.4081)


   

camelliagenine A, 16-beta,beta-dimethylacrylate 3,22,28-triacetate

camelliagenine A, 16-beta,beta-dimethylacrylate 3,22,28-triacetate

C41H62O8 (682.4444)


   

mutadione D

mutadione D

C42H66O7 (682.4808)


   
   

2-Tridecyl-3-(2-tridecyl-3-acetoxy-4-methoxy-6-hydroxyphenyl)-6-methoxy-1,4-benzoquinone

2-Tridecyl-3-(2-tridecyl-3-acetoxy-4-methoxy-6-hydroxyphenyl)-6-methoxy-1,4-benzoquinone

C42H66O7 (682.4808)


   
   

3beta-O-beta-D-glucopyranosyl-1alpha,25,31-trihydroxycycloartan-28-oic acid|nerviside B

3beta-O-beta-D-glucopyranosyl-1alpha,25,31-trihydroxycycloartan-28-oic acid|nerviside B

C37H62O11 (682.4292)


   

6alpha,23,24,25-tetraol-16betaacetoxy-23(R),24(R)-9,19-cyclolanosta-3beta-O-xyloside|bicusposide F

6alpha,23,24,25-tetraol-16betaacetoxy-23(R),24(R)-9,19-cyclolanosta-3beta-O-xyloside|bicusposide F

C37H62O11 (682.4292)


   

lobophytone M

lobophytone M

C41H62O8 (682.4444)


   

Arg Arg Lys Ser His

Arg Arg Lys Ser His

C27H50N14O7 (682.3987)


   

RRKSH

Arg Arg Lys Ser His

C27H50N14O7 (682.3987)


   

PA(13:0/22:4(7Z,10Z,13Z,16Z))

1-tridecanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(15:0/20:4(5Z,8Z,11Z,14Z))

1-pentadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(15:1(9Z)/20:3(8Z,11Z,14Z))

1-(9Z-pentadecenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(17:0/18:4(6Z,9Z,12Z,15Z))

1-heptadecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(17:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-heptadecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(17:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-heptadecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(17:2(9Z,12Z)/18:2(9Z,12Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(18:2(9Z,12Z)/17:2(9Z,12Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(18:3(6Z,9Z,12Z)/17:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(18:3(9Z,12Z,15Z)/17:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(18:4(6Z,9Z,12Z,15Z)/17:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-heptadecanoyl-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(20:3(8Z,11Z,14Z)/15:1(9Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(20:4(5Z,8Z,11Z,14Z)/15:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-pentadecanoyl-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(22:4(7Z,10Z,13Z,16Z)/13:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-tridecanoyl-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA(O-18:0/18:4(6Z,9Z,12Z,15Z))

1-octadecyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

PA(O-16:0/20:4(5Z,8Z,11Z,14Z))

1-hexadecyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

PA(P-16:0/20:3(8Z,11Z,14Z))

1-(1Z-hexadecenyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

PA(P-18:0/18:3(6Z,9Z,12Z))

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

PA(P-18:0/18:3(9Z,12Z,15Z))

1-(1Z-octadecenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

Cyclopassifloside II

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 15-[5,6-dihydroxy-5-(propan-2-yl)hexan-2-yl]-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecane-7-carboxylate

C37H62O11 (682.4292)


   

PA 35:4

1-(9Z,12Z-octadecadienoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphate

C38H67O8P (682.4573)


   

PA O-36:4

1-(1Z-octadecenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C39H71O7P (682.4937)


   

9-Octadecenoic acid(9Z)-, tin(2+) salt (2:1)

9-Octadecenoic acid(9Z)-, tin(2+) salt (2:1)

C36H66O4Sn (682.3983)


   

calcium,bis(2-ethylhexyl) phosphate

calcium,bis(2-ethylhexyl) phosphate

C32H68CaO8P2 (682.4015)


   

mycinamicin III(1+)

mycinamicin III(1+)

C36H60NO11+ (682.4166)


   

H-Abu-Abu-Abu-Abu-Abu-Abu-Abu-Abu-al

H-Abu-Abu-Abu-Abu-Abu-Abu-Abu-Abu-al

C32H58N8O8 (682.4377)


   

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H63O9P (682.4209)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:0)

C37H63O9P (682.4209)


   

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(i-14:0/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H63O9P (682.4209)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/i-14:0)

C37H63O9P (682.4209)


   

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(i-14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/i-14:0)

C37H63O9P (682.4209)


   

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(14:0/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:0)

C37H63O9P (682.4209)


   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:0)

C37H63O9P (682.4209)


   

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:0)

C37H63O9P (682.4209)


   

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:0)

C37H63O9P (682.4209)


   

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H63O9P (682.4209)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:0)

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(14:1(9Z)/20:3(5Z,8Z,11Z)-O(14R,15S))

C37H63O9P (682.4209)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(14:1(9Z)/20:3(5Z,8Z,14Z)-O(11S,12R))

C37H63O9P (682.4209)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

PA(14:1(9Z)/20:3(5Z,11Z,14Z)-O(8,9))

C37H63O9P (682.4209)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

PA(20:3(5Z,11Z,14Z)-O(8,9)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

PA(14:1(9Z)/20:3(8Z,11Z,14Z)-O(5,6))

C37H63O9P (682.4209)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

PA(20:3(8Z,11Z,14Z)-O(5,6)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(20))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)-OH(5S))

C37H63O9P (682.4209)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(17))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)-OH(15S))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(14:1(9Z)/20:4(5Z,8Z,10E,14Z)-OH(12S))

C37H63O9P (682.4209)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(14:1(9Z)/20:4(5E,8Z,12Z,14Z)-OH(11R))

C37H63O9P (682.4209)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(14:1(9Z)/20:4(5Z,7E,11Z,14Z)-OH(9))

C37H63O9P (682.4209)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/14:1(9Z))

C37H63O9P (682.4209)


   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/i-14:0)

C37H63O9P (682.4209)


   

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(i-14:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/i-14:0)

C37H63O9P (682.4209)


   

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(i-14:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H63O9P (682.4209)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/i-14:0)

C37H63O9P (682.4209)


   

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(i-14:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H63O9P (682.4209)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/i-14:0)

C37H63O9P (682.4209)


   

(5R,6S,7S)-5,6-dihydroxy-8-(alpha-D-galactosyloxy)-7-octanamido-N-(8-phenyloctyl)octanamide

(5R,6S,7S)-5,6-dihydroxy-8-(alpha-D-galactosyloxy)-7-octanamido-N-(8-phenyloctyl)octanamide

C36H62N2O10 (682.4404)


   

NAGlySer 18:5/17:2

NAGlySer 18:5/17:2

C40H62N2O7 (682.4557)


   

NAGlySer 22:6/13:1

NAGlySer 22:6/13:1

C40H62N2O7 (682.4557)


   

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-tetracos-13-enoate

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-tetracos-13-enoate

C33H63O12P (682.4057)


   

Dgdg O-9:0_9:0

Dgdg O-9:0_9:0

C33H62O14 (682.4139)


   

Smgdg O-9:0_15:1

Smgdg O-9:0_15:1

C33H62O12S (682.3962)


   

Smgdg O-22:1_2:0

Smgdg O-22:1_2:0

C33H62O12S (682.3962)


   

Smgdg O-20:1_4:0

Smgdg O-20:1_4:0

C33H62O12S (682.3962)


   

Smgdg O-17:1_7:0

Smgdg O-17:1_7:0

C33H62O12S (682.3962)


   

Smgdg O-16:1_8:0

Smgdg O-16:1_8:0

C33H62O12S (682.3962)


   

Smgdg O-19:1_5:0

Smgdg O-19:1_5:0

C33H62O12S (682.3962)


   

Smgdg O-8:0_16:1

Smgdg O-8:0_16:1

C33H62O12S (682.3962)


   

Smgdg O-21:1_3:0

Smgdg O-21:1_3:0

C33H62O12S (682.3962)


   

Smgdg O-15:1_9:0

Smgdg O-15:1_9:0

C33H62O12S (682.3962)


   

Smgdg O-18:1_6:0

Smgdg O-18:1_6:0

C33H62O12S (682.3962)


   

Dgdg O-16:0_2:0

Dgdg O-16:0_2:0

C33H62O14 (682.4139)


   

Dgdg O-11:0_7:0

Dgdg O-11:0_7:0

C33H62O14 (682.4139)


   

Dgdg O-13:0_5:0

Dgdg O-13:0_5:0

C33H62O14 (682.4139)


   

Dgdg O-12:0_6:0

Dgdg O-12:0_6:0

C33H62O14 (682.4139)


   

Dgdg O-10:0_8:0

Dgdg O-10:0_8:0

C33H62O14 (682.4139)


   

Dgdg O-8:0_10:0

Dgdg O-8:0_10:0

C33H62O14 (682.4139)


   

Dgdg O-15:0_3:0

Dgdg O-15:0_3:0

C33H62O14 (682.4139)


   

Dgdg O-14:0_4:0

Dgdg O-14:0_4:0

C33H62O14 (682.4139)


   

Smgdg O-11:0_13:1

Smgdg O-11:0_13:1

C33H62O12S (682.3962)


   

Smgdg O-10:0_14:1

Smgdg O-10:0_14:1

C33H62O12S (682.3962)


   

Smgdg O-14:1_10:0

Smgdg O-14:1_10:0

C33H62O12S (682.3962)


   

Smgdg O-13:1_11:0

Smgdg O-13:1_11:0

C33H62O12S (682.3962)


   

PE-Cer 15:3;2O/20:2;O

PE-Cer 15:3;2O/20:2;O

C37H67N2O7P (682.4686)


   

PE-Cer 17:3;2O/18:2;O

PE-Cer 17:3;2O/18:2;O

C37H67N2O7P (682.4686)


   

PE-Cer 19:3;2O/16:2;O

PE-Cer 19:3;2O/16:2;O

C37H67N2O7P (682.4686)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C37H63O9P (682.4209)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (Z)-tridec-9-enoate

C37H63O9P (682.4209)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] undecanoate

C33H63O12P (682.4057)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C33H63O12P (682.4057)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] decanoate

C33H63O12P (682.4057)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tridec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-tridec-9-enoate

C33H63O12P (682.4057)


   
   

PEtOH 15:1_18:3

PEtOH 15:1_18:3

C38H67O8P (682.4573)


   

PEtOH 16:2_17:2

PEtOH 16:2_17:2

C38H67O8P (682.4573)


   

PMeOH 16:1_18:3

PMeOH 16:1_18:3

C38H67O8P (682.4573)


   

PEtOH 13:0_20:4

PEtOH 13:0_20:4

C38H67O8P (682.4573)


   

PMeOH 18:1_16:3

PMeOH 18:1_16:3

C38H67O8P (682.4573)


   

PMeOH 16:0_18:4

PMeOH 16:0_18:4

C38H67O8P (682.4573)


   

PMeOH 18:0_16:4

PMeOH 18:0_16:4

C38H67O8P (682.4573)


   

PMeOH 14:0_20:4

PMeOH 14:0_20:4

C38H67O8P (682.4573)


   

PEtOH 17:0_16:4

PEtOH 17:0_16:4

C38H67O8P (682.4573)


   

PMeOH 17:2_17:2

PMeOH 17:2_17:2

C38H67O8P (682.4573)


   

PMeOH 16:2_18:2

PMeOH 16:2_18:2

C38H67O8P (682.4573)


   

PEtOH 15:0_18:4

PEtOH 15:0_18:4

C38H67O8P (682.4573)


   

PEtOH 17:1_16:3

PEtOH 17:1_16:3

C38H67O8P (682.4573)


   

PMeOH 12:0_22:4

PMeOH 12:0_22:4

C38H67O8P (682.4573)


   

PMeOH 14:1_20:3

PMeOH 14:1_20:3

C38H67O8P (682.4573)


   

PEtOH 13:1_20:3

PEtOH 13:1_20:3

C38H67O8P (682.4573)


   

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C38H66O10 (682.4656)


   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C38H66O10 (682.4656)


   

[6-[2,3-Di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-Di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C38H66O10 (682.4656)


   

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C38H66O10 (682.4656)


   

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C38H66O10 (682.4656)


   

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C38H67O8P (682.4573)


   

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-heptadecanoyloxy-3-phosphonooxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C38H67O8P (682.4573)


   

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C38H67O8P (682.4573)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C38H67O8P (682.4573)


   

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C38H67O8P (682.4573)


   

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C38H67O8P (682.4573)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C38H67O8P (682.4573)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C38H67O8P (682.4573)


   

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C38H67O8P (682.4573)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-nonadec-9-enoate

C38H67O8P (682.4573)


   

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C38H67O8P (682.4573)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H67O8P (682.4573)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H66O10 (682.4656)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H67O8P (682.4573)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate

C38H67O8P (682.4573)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H67O8P (682.4573)


   

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C38H66O10 (682.4656)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C38H67O8P (682.4573)


   

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H64NO7+ (682.4683)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C38H67O8P (682.4573)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C38H67O8P (682.4573)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C41H64NO7+ (682.4683)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C38H67O8P (682.4573)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] nonadecanoate

C38H67O8P (682.4573)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,9E)-nonadeca-7,9-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,9E)-nonadeca-7,9-dienoate

C38H67O8P (682.4573)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate

C38H67O8P (682.4573)


   

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H67O8P (682.4573)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tridecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-tridecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate

C38H67O8P (682.4573)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H66O10 (682.4656)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-nonadec-9-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-nonadec-9-enoate

C38H67O8P (682.4573)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate

C38H67O8P (682.4573)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H66O10 (682.4656)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C38H67O8P (682.4573)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C41H64NO7+ (682.4683)


   

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-2-heptadecanoyloxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H67O8P (682.4573)


   

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate

C38H66O10 (682.4656)


   

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C38H66O10 (682.4656)


   

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[(E)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C38H67O8P (682.4573)


   

[(2S,3S,6S)-6-[(2S)-2,3-di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-di(dodecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C38H67O8P (682.4573)


   

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-heptadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C38H67O8P (682.4573)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tridecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-tridecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C38H67O8P (682.4573)


   

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]propyl]-trimethylazanium

C41H64NO7+ (682.4683)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C38H67O8P (682.4573)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H62O12S (682.3962)


   

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C38H67O8P (682.4573)


   

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C38H67O8P (682.4573)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-undecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C37H65NO8P+ (682.4448)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-dodecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-dodecanoyloxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-decanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-decanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[hydroxy-[2-hydroxy-3-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-acetyloxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-acetyloxy-3-[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-butanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-butanoyloxy-3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[2-hexanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[3-dodecoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecoxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[3-decoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decoxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C38H69NO7P+ (682.4811)


   

1-palmityl-2-arachidonoyl-sn-glycero-3-phosphate

1-palmityl-2-arachidonoyl-sn-glycero-3-phosphate

C39H71O7P (682.4937)


A 1-alkyl-2-acyl-sn-glycero-3-phosphate in which the alkyl and acyl groups are specified as palmityl (hexadecyl) and arachidonoyl respectively.

   

BisMePA(34:4)

BisMePA(16:2(1)_18:2)

C39H71O7P (682.4937)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PEt(34:4)

PEt(16:2(1)_18:2)

C39H71O7P (682.4937)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG 11:0_18:3

MGDG 11:0_18:3

C38H66O10 (682.4656)


   
   

MGDG O-29:4;O

MGDG O-29:4;O

C38H66O10 (682.4656)


   
   
   
   
   
   
   

PA O-14:0/22:4

PA O-14:0/22:4

C39H71O7P (682.4937)


   

PA O-16:0/20:4

PA O-16:0/20:4

C39H71O7P (682.4937)


   

PA O-16:1/20:3

PA O-16:1/20:3

C39H71O7P (682.4937)


   

PA O-16:2/20:2

PA O-16:2/20:2

C39H71O7P (682.4937)


   

PA O-18:0/18:4

PA O-18:0/18:4

C39H71O7P (682.4937)


   

PA O-18:1/18:3

PA O-18:1/18:3

C39H71O7P (682.4937)


   

PA O-18:2/18:2

PA O-18:2/18:2

C39H71O7P (682.4937)


   

PA P-16:0/20:3

PA P-16:0/20:3

C39H71O7P (682.4937)


   

PA P-16:0/20:3 or PA O-16:1/20:3

PA P-16:0/20:3 or PA O-16:1/20:3

C39H71O7P (682.4937)


   

PA P-16:1/20:2

PA P-16:1/20:2

C39H71O7P (682.4937)


   

PA P-16:1/20:2 or PA O-16:2/20:2

PA P-16:1/20:2 or PA O-16:2/20:2

C39H71O7P (682.4937)


   

PA P-18:0/18:3

PA P-18:0/18:3

C39H71O7P (682.4937)


   

PA P-18:0/18:3 or PA O-18:1/18:3

PA P-18:0/18:3 or PA O-18:1/18:3

C39H71O7P (682.4937)


   

PA P-18:1/18:2

PA P-18:1/18:2

C39H71O7P (682.4937)


   

PA P-18:1/18:2 or PA O-18:2/18:2

PA P-18:1/18:2 or PA O-18:2/18:2

C39H71O7P (682.4937)


   
   

PA P-36:3 or PA O-36:4

PA P-36:3 or PA O-36:4

C39H71O7P (682.4937)


   

PA 14:0/20:5;O

PA 14:0/20:5;O

C37H63O9P (682.4209)


   

PA 14:1/20:4;O

PA 14:1/20:4;O

C37H63O9P (682.4209)


   

PA 22:2/12:3;O

PA 22:2/12:3;O

C37H63O9P (682.4209)


   
   
   
   
   
   
   
   
   

PG O-20:0/7:2;O3

PG O-20:0/7:2;O3

C33H63O12P (682.4057)


   

PG O-20:0/8:1;O2

PG O-20:0/8:1;O2

C34H67O11P (682.4421)


   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/10:0 or PI O-14:1/10:0

PI P-14:0/10:0 or PI O-14:1/10:0

C33H63O12P (682.4057)


   
   

PI P-20:0/4:0 or PI O-20:1/4:0

PI P-20:0/4:0 or PI O-20:1/4:0

C33H63O12P (682.4057)


   
   

PI P-22:0/2:0 or PI O-22:1/2:0

PI P-22:0/2:0 or PI O-22:1/2:0

C33H63O12P (682.4057)


   
   

PI P-24:0 or PI O-24:1

PI P-24:0 or PI O-24:1

C33H63O12P (682.4057)


   
   
   
   
   
   

methyl (1r,2s,7s,10s,14r,17s,20s,21s,22e,26s,27s,30r)-2-hydroxy-17-isopropyl-1,5,10,14,23,27-hexamethyl-8,15,18-trioxo-31,32-dioxapentacyclo[24.4.1.1²⁷,³⁰.0⁴,²¹.0⁷,²⁰]dotriaconta-4,22-diene-20-carboxylate

methyl (1r,2s,7s,10s,14r,17s,20s,21s,22e,26s,27s,30r)-2-hydroxy-17-isopropyl-1,5,10,14,23,27-hexamethyl-8,15,18-trioxo-31,32-dioxapentacyclo[24.4.1.1²⁷,³⁰.0⁴,²¹.0⁷,²⁰]dotriaconta-4,22-diene-20-carboxylate

C41H62O8 (682.4444)


   

16-({7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl}methoxy)-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

16-({7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl}methoxy)-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

C40H58O9 (682.4081)


   

3-{2-[(4e,6e)-1-(acetyloxy)-6,10-dimethylundeca-2,4,6,9-tetraen-2-yl]-1,10-dihydroxy-10-methyl-7-(1-oxopropan-2-ylidene)spiro[4.5]decan-6-yl}propyl decanoate

3-{2-[(4e,6e)-1-(acetyloxy)-6,10-dimethylundeca-2,4,6,9-tetraen-2-yl]-1,10-dihydroxy-10-methyl-7-(1-oxopropan-2-ylidene)spiro[4.5]decan-6-yl}propyl decanoate

C42H66O7 (682.4808)


   

(6e,10r,11s,14r,15r,18e)-10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

(6e,10r,11s,14r,15r,18e)-10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[(2s,3s,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

C38H66O10 (682.4656)


   

methyl (1s,5r,8r,12s,15r,18r,19r,20e,25r,28s,29r)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

methyl (1s,5r,8r,12s,15r,18r,19r,20e,25r,28s,29r)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

C41H62O8 (682.4444)


   

methyl (1s,2s,4s,8r,11r,15s,18r,21s,22r,23z,27r)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

methyl (1s,2s,4s,8r,11r,15s,18r,21s,22r,23z,27r)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

C41H62O8 (682.4444)


   

methyl 19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl 19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233)


   

beesioside p

NA

C37H62O11 (682.4292)


{"Ingredient_id": "HBIN017692","Ingredient_name": "beesioside p","Alias": "NA","Ingredient_formula": "C37H62O11","Ingredient_Smile": "CC(=O)OC1C(C(C2(C1(C3CCC4C(C(CCC45C3(C5)CC2)OC6C(C(C(CO6)O)O)O)(C)C)C)C)C(C)(CCC(C(C)(C)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2209","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

methyl 4,27-dihydroxy-18-isopropyl-6,11,15,24,28-pentamethyl-2-methylidene-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl 4,27-dihydroxy-18-isopropyl-6,11,15,24,28-pentamethyl-2-methylidene-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

4-hydroxy-6-methoxy-3-(4-methoxy-3,6-dioxo-2-tridecylcyclohexa-1,4-dien-1-yl)-2-tridecylphenyl acetate

4-hydroxy-6-methoxy-3-(4-methoxy-3,6-dioxo-2-tridecylcyclohexa-1,4-dien-1-yl)-2-tridecylphenyl acetate

C42H66O7 (682.4808)


   

(3r)-3',5,6-trihydroxy-4,4'-dipentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

(3r)-3',5,6-trihydroxy-4,4'-dipentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

C42H66O7 (682.4808)


   

8,14,18,21-tetrahydroxy-19-(1-hydroxyethyl)-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

8,14,18,21-tetrahydroxy-19-(1-hydroxyethyl)-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

C31H54N8O9 (682.4014)


   

methyl (1s,5r,8r,12s,15r,18s,19r,20e,25r,28s,29r)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

methyl (1s,5r,8r,12s,15r,18s,19r,20e,25r,28s,29r)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

C41H62O8 (682.4444)


   

methyl (1r,2s,5r,8s,12r,15r,19r,21r,23r,26r,28r,31z)-19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl (1r,2s,5r,8s,12r,15r,19r,21r,23r,26r,28r,31z)-19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

methyl (1r,2s,4s,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl (1r,2s,4s,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

5-(4,8-dimethylnona-3,7-dien-1-yl)-8,16-dihydroxy-5,9,14-trimethyl-11-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

5-(4,8-dimethylnona-3,7-dien-1-yl)-8,16-dihydroxy-5,9,14-trimethyl-11-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233)


   

methyl (1r,2s,4r,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

methyl (1r,2s,4r,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

C41H62O8 (682.4444)


   

methyl 20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl 20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

(2r,3s,4s,5r,6r)-6-{[(1s,2s,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-2-hydroxy-3a-(hydroxymethyl)-1-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a-pentamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-(2-hydroxyethoxy)-2-(hydroxymethyl)oxane-3,4-diol

(2r,3s,4s,5r,6r)-6-{[(1s,2s,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-2-hydroxy-3a-(hydroxymethyl)-1-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a-pentamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-(2-hydroxyethoxy)-2-(hydroxymethyl)oxane-3,4-diol

C38H66O10 (682.4656)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-5-isopropylhexan-2-yl]-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-5-isopropylhexan-2-yl]-4,6-dihydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylate

C37H62O11 (682.4292)


   

3',5,6-trihydroxy-4,4'-dipentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

3',5,6-trihydroxy-4,4'-dipentadecylspiro[1-benzofuran-3,1'-cyclopentan]-3'-ene-2,2',5'-trione

C42H66O7 (682.4808)


   

methyl (1s,2s,4r,8r,11r,15s,18r,21r,22r,23z,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl (1s,2s,4r,8r,11r,15s,18r,21r,22r,23z,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

(3r,11s,17r,22as)-11-benzyl-9-hydroxy-3-[(4r)-4-methoxypentyl]-6,13,16-trimethyl-17-(2-methylpropyl)-3h,4h,5h,8h,11h,14h,17h,20h,21h,22h,22ah-pyrrolo[2,1-c]1-oxa-4,7,10,13-tetraazacycloicosane-1,12,15,18-tetrone

(3r,11s,17r,22as)-11-benzyl-9-hydroxy-3-[(4r)-4-methoxypentyl]-6,13,16-trimethyl-17-(2-methylpropyl)-3h,4h,5h,8h,11h,14h,17h,20h,21h,22h,22ah-pyrrolo[2,1-c]1-oxa-4,7,10,13-tetraazacycloicosane-1,12,15,18-tetrone

C38H58N4O7 (682.4305)


   

methyl (1r,4r,8s,11s,15r,18s,21s,22s,23e,27r,28s)-4,27-dihydroxy-18-isopropyl-6,11,15,24,28-pentamethyl-2-methylidene-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl (1r,4r,8s,11s,15r,18s,21s,22s,23e,27r,28s)-4,27-dihydroxy-18-isopropyl-6,11,15,24,28-pentamethyl-2-methylidene-9,16,19-trioxo-31-oxatetracyclo[26.2.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

methyl (1s,5r,8s,11r,15s,18s,19r,20e,24s,26s,29r,30s)-30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

methyl (1s,5r,8s,11r,15s,18s,19r,20e,24s,26s,29r,30s)-30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

C41H62O8 (682.4444)


   

15-benzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

15-benzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C37H58N6O6 (682.4418)


   

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

(5r)-5-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-8,16-dihydroxy-5,9,14-trimethyl-11-[(6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]-6,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1,3,7,9,13-pentaene-12,15-dione

C44H58O6 (682.4233)


   

3-[(1r,2r,5s,6r,7z,10s)-2-[(2e,4e,6e)-1-(acetyloxy)-6,10-dimethylundeca-2,4,6,9-tetraen-2-yl]-1,10-dihydroxy-10-methyl-7-(1-oxopropan-2-ylidene)spiro[4.5]decan-6-yl]propyl decanoate

3-[(1r,2r,5s,6r,7z,10s)-2-[(2e,4e,6e)-1-(acetyloxy)-6,10-dimethylundeca-2,4,6,9-tetraen-2-yl]-1,10-dihydroxy-10-methyl-7-(1-oxopropan-2-ylidene)spiro[4.5]decan-6-yl]propyl decanoate

C42H66O7 (682.4808)


   

methyl 2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl 2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

(1r,2s,5s,7r,8r,9s,10s,11r,15s,16s,18r)-16-{[(3ar,5as,6s,7r,9as,9bs,11as)-7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl]methoxy}-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

(1r,2s,5s,7r,8r,9s,10s,11r,15s,16s,18r)-16-{[(3ar,5as,6s,7r,9as,9bs,11as)-7-hydroxy-6,9a-dimethyl-1-methylidene-2h,3ah,5h,5ah,7h,8h,9h,9bh,10h,11h,11ah-phenanthro[1,2-b]furan-6-yl]methoxy}-12,12-dimethyl-6-methylidene-17-oxapentacyclo[7.6.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-7,9,10,15,18-pentol

C40H58O9 (682.4081)


   

methyl 30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

methyl 30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

C41H62O8 (682.4444)


   

methyl 2-hydroxy-17-isopropyl-1,5,10,14,23,27-hexamethyl-8,15,18-trioxo-31,32-dioxapentacyclo[24.4.1.1²⁷,³⁰.0⁴,²¹.0⁷,²⁰]dotriaconta-4,22-diene-20-carboxylate

methyl 2-hydroxy-17-isopropyl-1,5,10,14,23,27-hexamethyl-8,15,18-trioxo-31,32-dioxapentacyclo[24.4.1.1²⁷,³⁰.0⁴,²¹.0⁷,²⁰]dotriaconta-4,22-diene-20-carboxylate

C41H62O8 (682.4444)


   

methyl (1r,5s,8s,12r,15s,18s,19s,20e,25s,28r,29s)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

methyl (1r,5s,8s,12r,15s,18s,19s,20e,25s,28r,29s)-29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

C41H62O8 (682.4444)


   

methyl (1r,2z,5r,6s,9r,10s,13e,15s,16s,19s,22r,26s,27e,29s)-5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

methyl (1r,2z,5r,6s,9r,10s,13e,15s,16s,19s,22r,26s,27e,29s)-5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

C41H62O8 (682.4444)


   

4-(acetyloxy)-1-[2-(acetyloxy)-5-(3,3-dimethyloxiran-2-yl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

4-(acetyloxy)-1-[2-(acetyloxy)-5-(3,3-dimethyloxiran-2-yl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

C40H58O9 (682.4081)


   

methyl (1s,2r,4z,8r,11r,15s,18s,21r,22s,23z,27s,28s)-2,28-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-4,6,23-triene-21-carboxylate

methyl (1s,2r,4z,8r,11r,15s,18s,21r,22s,23z,27s,28s)-2,28-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-4,6,23-triene-21-carboxylate

C41H62O8 (682.4444)


   

(2r,6r)-6-[(1r,3as,3br,4r,5as,7r,9as,9bs,11s,11ar)-4-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-7,11-dihydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylheptyl acetate

(2r,6r)-6-[(1r,3as,3br,4r,5as,7r,9as,9bs,11s,11ar)-4-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-7,11-dihydroxy-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylheptyl acetate

C37H62O11 (682.4292)


   

methyl (1s,2z,5s,6r,9r,10r,13e,15r,16s,19r,22s,26r,27z,29r)-5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

methyl (1s,2z,5s,6r,9r,10r,13e,15r,16s,19r,22s,26r,27z,29r)-5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

C41H62O8 (682.4444)


   

methyl (1s,2s,5s,8r,12s,15s,20s,21s,23r,26s,28r,31e)-20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl (1s,2s,5s,8r,12s,15s,20s,21s,23r,26s,28r,31e)-20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

methyl 5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

methyl 5,10-dihydroxy-19-isopropyl-1,5,9,13,22,26-hexamethyl-18,21-dioxo-31,32-dioxapentacyclo[26.2.1.1⁶,⁹.0²,¹⁵.0¹⁶,²⁹]dotriaconta-2,13,27-triene-16-carboxylate

C41H62O8 (682.4444)


   

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s,3r)-2-{[(2s)-1-hydroxy-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butylidene]amino}-n,3-dimethylpentanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

(2s)-5-carbamimidamido-2-{[(2e,4s)-1-hydroxy-4-[(2s,3r)-2-{[(2s)-1-hydroxy-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butylidene]amino}-n,3-dimethylpentanamido]-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

C36H58N8O5 (682.453)


   

6-{[2-hydroxy-3a-(hydroxymethyl)-1-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a-pentamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-(2-hydroxyethoxy)-2-(hydroxymethyl)oxane-3,4-diol

6-{[2-hydroxy-3a-(hydroxymethyl)-1-(2-hydroxypropan-2-yl)-5a,5b,8,8,11a-pentamethyl-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-5-(2-hydroxyethoxy)-2-(hydroxymethyl)oxane-3,4-diol

C38H66O10 (682.4656)


   

(6e,18e)-10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

(6e,18e)-10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

C38H66O10 (682.4656)


   

(2s,3s)-2-[(2s)-2-{[(2s)-2-[(2s,3s)-n,3-dimethyl-2-[(2s)-n-methyl-2-[(2e)-n-methyl-3-(methylsulfanyl)prop-2-enamido]propanamido]pentanamido]-1-hydroxy-3-methylbutylidene]amino}-n,3-dimethylbutanamido]-n,3-dimethylpentanimidic acid

(2s,3s)-2-[(2s)-2-{[(2s)-2-[(2s,3s)-n,3-dimethyl-2-[(2s)-n-methyl-2-[(2e)-n-methyl-3-(methylsulfanyl)prop-2-enamido]propanamido]pentanamido]-1-hydroxy-3-methylbutylidene]amino}-n,3-dimethylbutanamido]-n,3-dimethylpentanimidic acid

C34H62N6O6S (682.4451)


   

10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

10,15-dihydroxy-2,6,10,15,19,23-hexamethyl-14-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,6,18,22-tetraen-11-yl acetate

C38H66O10 (682.4656)


   

(1s,3br,4r,5ar,9as,9br,10r,11as)-4-(acetyloxy)-1-[(2r,3s,5s)-2-(acetyloxy)-5-[(2s)-3,3-dimethyloxiran-2-yl]oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

(1s,3br,4r,5ar,9as,9br,10r,11as)-4-(acetyloxy)-1-[(2r,3s,5s)-2-(acetyloxy)-5-[(2s)-3,3-dimethyloxiran-2-yl]oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate

C40H58O9 (682.4081)


   

methyl (1s,2s,5s,8r,12s,15s,20s,21s,23r,26r,28r,31z)-20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl (1s,2s,5s,8r,12s,15s,20s,21s,23r,26r,28r,31z)-20-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

2-(2-{[2-(n,3-dimethyl-2-{n-methyl-2-[n-methyl-3-(methylsulfanyl)prop-2-enamido]propanamido}pentanamido)-1-hydroxy-3-methylbutylidene]amino}-n,3-dimethylbutanamido)-n,3-dimethylpentanimidic acid

2-(2-{[2-(n,3-dimethyl-2-{n-methyl-2-[n-methyl-3-(methylsulfanyl)prop-2-enamido]propanamido}pentanamido)-1-hydroxy-3-methylbutylidene]amino}-n,3-dimethylbutanamido)-n,3-dimethylpentanimidic acid

C34H62N6O6S (682.4451)


   

methyl (1r,2s,4r,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

methyl (1r,2s,4r,8s,11s,15r,18s,21s,22s,23e,27s)-2,4-dihydroxy-18-isopropyl-2,6,11,15,24-pentamethyl-28-methylidene-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23-diene-21-carboxylate

C41H62O8 (682.4444)


   

methyl 29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

methyl 29-hydroxy-15-isopropyl-3,8,12,21,25,29-hexamethyl-6,13,16,24-tetraoxo-31-oxatetracyclo[26.2.1.0²,¹⁹.0⁵,¹⁸]hentriaconta-2,20-diene-18-carboxylate

C41H62O8 (682.4444)


   

(3s,6r,8r,13s,16r,19s,22r)-8,14,18,21-tetrahydroxy-19-[(1r)-1-hydroxyethyl]-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

(3s,6r,8r,13s,16r,19s,22r)-8,14,18,21-tetrahydroxy-19-[(1r)-1-hydroxyethyl]-3,16-diisopropyl-4-methyl-13-(2-methylpropyl)-1,4,10,11,14,17,20,26-octaazatricyclo[20.4.0.0⁶,¹¹]hexacosa-17,20-diene-2,5,12,15-tetrone

C31H54N8O9 (682.4014)


   

methyl 2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

methyl 2,4-dihydroxy-18-isopropyl-2,6,11,15,24,28-hexamethyl-9,16,19-trioxo-31-oxatetracyclo[25.3.1.0⁵,²².0⁸,²¹]hentriaconta-5,23,28-triene-21-carboxylate

C41H62O8 (682.4444)


   

5-carbamimidamido-2-{[1-hydroxy-4-(2-{[1-hydroxy-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butylidene]amino}-n,3-dimethylpentanamido)-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

5-carbamimidamido-2-{[1-hydroxy-4-(2-{[1-hydroxy-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butylidene]amino}-n,3-dimethylpentanamido)-2,5-dimethylhex-2-en-1-ylidene]amino}pentanoic acid

C36H58N8O5 (682.453)


   

methyl (1r,2r,5r,8s,12r,15r,19r,21r,23r,26r,28r,31e)-19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

methyl (1r,2r,5r,8s,12r,15r,19r,21r,23r,26r,28r,31e)-19-hydroxy-5-isopropyl-8,12,17,21,26,31-hexamethyl-4,7,14-trioxo-22,27-dioxapentacyclo[16.14.0.0²,¹⁵.0²¹,²³.0²⁶,²⁸]dotriaconta-17,31-diene-2-carboxylate

C41H62O8 (682.4444)


   

(3s,6r,9s,12s,15r,20as)-15-benzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

(3s,6r,9s,12s,15r,20as)-15-benzyl-1,4,7,10,13-pentahydroxy-9-isopropyl-3,6,12-tris(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one

C37H58N6O6 (682.4418)


   

methyl (1s,5r,8s,11r,15s,18s,19r,20e,24s,26r,29r,30s)-30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

methyl (1s,5r,8s,11r,15s,18s,19r,20e,24s,26r,29r,30s)-30-hydroxy-8-isopropyl-3,11,15,21,26,30-hexamethyl-7,10,17-trioxo-25,32-dioxapentacyclo[27.2.1.0²,¹⁹.0⁵,¹⁸.0²⁴,²⁶]dotriaconta-2,20-diene-5-carboxylate

C41H62O8 (682.4444)