Exact Mass: 678.4244
Exact Mass Matches: 678.4244
Found 387 metabolites which its exact mass value is equals to given mass value 678.4244
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Gingerglycolipid B
Gingerglycolipid B is found in ginger. Gingerglycolipid B is from Zingiber officinale (ginger). From Zingiber officinale (ginger). Gingerglycolipid B is found in herbs and spices and ginger.
Descladinose roxithromycin
Descladinose roxithromycin is a metabolite of roxithromycin. Roxithromycin is a semi-synthetic macrolide antibiotic. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin is derived from erythromycin, containing the same 14-membered lactone ring. However, an N-oxime side chain is attached to the lactone ring. It is also currently undergoing clinical trials for the treatment of male-pattern hair loss. (Wikipedia)
PA(14:0/18:1(12Z)-2OH(9,10))
PA(14:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/14:0)
PA(18:1(12Z)-2OH(9,10)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/14:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-14:0/18:1(12Z)-2OH(9,10))
PA(i-14:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-14:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 12-methyltridecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:1(12Z)-2OH(9,10)/i-14:0)
PA(18:1(12Z)-2OH(9,10)/i-14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:1(12Z)-2OH(9,10)/i-14:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 12-methyltridecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Cimiracemoside D
Cimiracemoside D is a cucurbitacin and a glycoside. It has a role as a metabolite. See also: Black Cohosh (part of). A natural product found in Actaea racemosa. Cimiracemoside D is a natural product found in Actaea racemosa with unknown details.
(1R,2R,4aS,6aS,8R,9R,10aS,12aS)-9-acetoxy-2-{(1R)-1,2-dimethylpropyl}-2,4a,7,7,10a,12a-hexamethyl-8-(beta-D-glucopyranosyloxy)-1,2.3.4,4a,5,6,6a,7,8,9,10,10a,11,12,12a-hexadecahydrochrysene-1-carboxylic acid|FR207944|fuscoatroside
25-O-acetyl-1alpha-hydroxycimigenol 3-O-beta-D-xylopyranoside
24-O-acetyl-7,8-didehydrohydroshengmanol 3-O-alpha-L-arabinopyranoside
21-O-beta-D-glucopyranosyl-18R-hydroxydihydroalloprotolichesterinate 21-O-alpha-L-rhamnopyranoside
23-O-acetyl-1alpha-hydroxyshengmanol 3-O-beta-D-xylopyranoside
(23E)-(12R,20S)-12,20-dihydroxy-25-methoxy-3,4-secodammara-4(28),23-dien-3-oic acid ethyl ester 12-O-beta-D-quinovopyranoside|cyclocarioside E
19alpha,23-dihydroxyurs-12-en-28-oic acid 3beta-O-beta-D-glucuronopyranoside-6-O-methyl ester
25-O-acetyl-7beta-hydroxycimigenol-3-O-beta-D-xylopyranoside
(2alpha,3beta,4alpha)-23-(acetyloxy)-2,3-dihydroxy-olean-12-en-28-oic acid beta-D-glucopyranosyl ester
(1R)-1,4-epoxy-11alpha-hydroxy-3,4-seco-lup-20(30)-ene-3,28-dioic acid 3-methyl ester 28-O-beta-D-glucopyranoside|acanthosessilioside B
(3beta,4beta,16alpha)-17-carboxy-16,24-dihydroxy-28-norolean-12-en-3-yl beta-D-glucopyranosiduronic acid methyl ester
2,3,4-tri(5-methylhexanoyl)-alpha-D-glucopyranosyl-beta-D-fructofuranoside|2,3,4-Tri(5-methylhexanoyl)-??-D-glucopyranosyl-??-D-fructofuranoside
beta-D-glucopyranosyl (3beta)-3,29-dihydroxy-23-methoxy-23-oxoolean-12-en-28-oate|kalidiumoside A
25-O-acetyl-12beta-hydroxycimigenol 3-O-alpha-L-arabinopyranoside
18-O-alpha-L-rhamnopyranosyl-18S-hydroxyneodihydroprotolichesterinate 21-O-beta-D-glucopyranoside
16alpha-Acetyloxy-22,23-dihydroxy-24,28-epoxy-3beta-(beta-D-glucopyranosyloxy)-5alpha-stigmasta-7,9(11)-dien, Vernoniosid E
3beta,19alpha-dihydroxyurs-12-en-24,28-dioic acid-28-O-(6-O-methyl-beta-D-glucopyranosyl) ester
3-dodecanoyl-3-isobutanoyl-4-(3-methylbutanoyl)sucrose
PA(13:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
PA(15:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))
PA(17:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))
PA(18:4(6Z,9Z,12Z,15Z)/17:2(9Z,12Z))
PA(20:5(5Z,8Z,11Z,14Z,17Z)/15:1(9Z))
PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/13:0)
PA(P-16:0/20:5(5Z,8Z,11Z,14Z,17Z))
Gingerglycolipid B
23R,acetoxy-3beta,15alpha,24R,25-tetrahydroxy-cycloart-7-en-16-one-3-O-beta-D-xylopyranoside
5,11,17,25-Tetrakis(2-methyl-2-propanyl)-21-oxapentacyclo[21.3.1.13,7.19,13.115,19]triaconta-1(27),3(30),4,6,9(29),10,12,15(28),16,18,23,25-dodecaene-27,28,29,30-tetrol
(1R,2R,4aS,6aR,8R,9R,10aS,12aS)-9-(acetyloxy)-8-(beta-D-glucopyranosyloxy)-2,4a,7,7,10a,12a-hexamethyl-2-[(2R)-3-methylbutan-2-yl]-1,2,3,4,4a,5,6,6a,7,8,9,10,10a,11,12,12a-hexadecahydrochrysene-1-carboxylic acid
cyclo[OVal-Pro-N(Me)Val-ObAla(2S-Me,3R-pentyl)-Val-N(Me)Val]
Cumingianoside F
A triterpenoid saponin that is 24,25-epoxy-13,30-cyclodammarane-3,7,23-triol attached to a 6-O-acetyl-beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Isolated from Dysoxylum cumingianum it exhibits antileukemic activity.
N-(2-aminophenyl)-N-[(2S,3S)-2-[[[(cyclohexylamino)-oxomethyl]-methylamino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]heptanediamide
[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E,12E)-2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyheptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-docos-13-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexacos-15-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tridecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] pentadecanoate
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] hexadecanoate
[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-heptadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-nonadec-9-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-hexacos-15-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-icos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (Z)-docos-13-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-tetracos-13-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-henicos-11-enoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate
[1-[(Z)-heptadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-nonadeca-9,12-dienoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] hexadecanoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate
[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentadecanoate
[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[1-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-pentadec-9-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-7-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadec-17-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-11-enoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-11-enoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (10E,13E,16E)-nonadeca-10,13,16-trienoate
[1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-7-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-4-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] pentadecanoate
[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-7-enoate
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[1-[(E)-tridec-8-enoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-6-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-13-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-9-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-4-enoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (7E,9E)-nonadeca-7,9-dienoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] octadec-17-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-7-enoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-pentadec-9-enoate
[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] (E)-heptadec-9-enoate
[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-6-enoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (E)-nonadec-9-enoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] pentadecanoate
[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (E)-heptadec-9-enoate
2-[[2-butanoyloxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-hydroxy-3-[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-dodecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-sn-glycerol)
phosphatidylserine 28:0(1-)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 28 carbons in total and 0 double bonds.
lejimalide A
A macrolide that is isolated from the marine tunicate Eudistoma cf. rigida and exhibits potent in vitro cytotoxic activity.
BisMePA(34:6)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1r,2r,3ar,5as,7s,9as,11as)-1-[(2s,3r,4s)-3,4-dihydroxy-4-[(2s,3s)-2-isopropyl-3-methyloxiran-2-yl]butan-2-yl]-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-2-yl acetate
(2s)-4-{[(1r,3as,5ar,7r,8r,9as,11s,11ar)-7-(acetyloxy)-11-hydroxy-1-[(2s,3r,6s)-2-hydroxy-6-(2-hydroxypropan-2-yl)oxan-3-yl]-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-8-yl]oxy}-2-hydroxy-2-methyl-4-oxobutanoic acid
3-(acetyloxy)-15-[5-(acetyloxy)-6-(2-hydroxypropan-2-yl)oxan-3-yl]-2,6,6,10-tetramethylpentacyclo[12.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]octadecan-7-yl benzoate
[(2r,3s,4s,5r,6r)-6-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-15-[(2r,5e)-7-hydroxy-6-methylhept-5-en-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl acetate
(1r,3as,5ar,5br,7ar,8s,9r,11ar,11br,13ar,13br)-1-(but-1-en-2-yl)-5a,5b,8,11a-tetramethyl-9-{[(2s,3s,5s)-2,3,4,5-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexadecahydrocyclopenta[a]chrysene-3a,8-dicarboxylic acid
3-{10,13-dihydroxy-7,7,12,16-tetramethyl-14-oxo-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl}-1-(3,3-dimethyloxiran-2-yl)butyl acetate
2-methyl 4a-(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4ar,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-9-(hydroxymethyl)-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate
2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate
2-{[9,14-dihydroxy-15-(7-hydroxy-6-methylhept-5-en-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate
4-[(1s,3ar,3br,5ar,7s,9as,9bs,11ar)-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3a,9a,11a-trimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one
12β-acetoxycimigenol-3-o-β-d-xylopyranoside
{"Ingredient_id": "HBIN000745","Ingredient_name": "12\u03b2-acetoxycimigenol-3-o-\u03b2-d-xylopyranoside","Alias": "NA","Ingredient_formula": "C37H58O11","Ingredient_Smile": "CC1CC2C(OC3(C1C4(C(CC56CC57CCC(C(C7CCC6C4(C3O)C)(C)C)OC8C(C(C(CO8)O)O)O)OC(=O)C)C)O2)C(C)(C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14117","TCMID_id": "141","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
16,23-epoxycycloart-7-ene-3,15,16,24,25-pentol; (3β,15α,16αoh,23r,24s)-form,24-ac,3-o-beta-d-xylopyranoside
{"Ingredient_id": "HBIN001763","Ingredient_name": "16,23-epoxycycloart-7-ene-3,15,16,24,25-pentol; (3\u03b2,15\u03b1,16\u03b1oh,23r,24s)-form,24-ac,3-o-beta-d-xylopyranoside","Alias": "NA","Ingredient_formula": "C37H58O11","Ingredient_Smile": "NA","Ingredient_weight": "678.85","OB_score": "NA","CAS_id": "150972-78-4","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "9278","PubChem_id": "NA","DrugBank_id": "NA"}
(22r,23r,24r)-12β-acetyloxy-16β,23:22,25-di-epoxy-23,24-dihydroxy-9,19-cyclolanostan-3β-yl α-l-arabinopyranoside
{"Ingredient_id": "HBIN003759","Ingredient_name": "(22r,23r,24r)-12\u03b2-acetyloxy-16\u03b2,23:22,25-di-epoxy-23,24-dihydroxy-9,19-cyclolanostan-3\u03b2-yl \u03b1-l-arabinopyranoside","Alias": "NA","Ingredient_formula": "C37H58O11","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "477","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2,3,4-tri(5-methylhexanoyl)-α-d-glucopyranos-yl-β-d-fructofuranoside
{"Ingredient_id": "HBIN003890","Ingredient_name": "2,3,4-tri(5-methylhexanoyl)-\u03b1-d-glucopyranos-yl-\u03b2-d-fructofuranoside","Alias": "NA","Ingredient_formula": "C33H58O14","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21948","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
25-o-acetyl-12β-hydroxycimigenol 3-o-α-l-arabinopyranoside
{"Ingredient_id": "HBIN004693","Ingredient_name": "25-o-acetyl-12\u03b2-hydroxycimigenol 3-o-\u03b1-l-arabinopyranoside","Alias": "NA","Ingredient_formula": "C37H58O11","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "414","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2-o-acetyl-28-dehydroxy-rubianoside iv
{"Ingredient_id": "HBIN006168","Ingredient_name": "2-o-acetyl-28-dehydroxy-rubianoside iv","Alias": "NA","Ingredient_formula": "C38H62O10","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "371","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
beesioside k
{"Ingredient_id": "HBIN017687","Ingredient_name": "beesioside k","Alias": "NA","Ingredient_formula": "C37H58O11","Ingredient_Smile": "CC(=O)OC1C2C3(CCC(O3)(OCC24CCC56CC57CCC(C(C7CCC6C4(C1O)C)(C)C)OC8C(C(C(CO8)O)O)O)C(C)(C)O)C","Ingredient_weight": "678.8 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2204","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "15908519","DrugBank_id": "NA"}