Exact Mass: 671.45832
Exact Mass Matches: 671.45832
Found 275 metabolites which its exact mass value is equals to given mass value 671.45832
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Pepsinostreptin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins
PE(14:1(9Z)/P-18:1(11Z))
C37H70NO7P (671.4889639999999)
PE(14:1(9Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/P-18:1(11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(14:1(9Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/P-18:1(11Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(14:1(9Z)/P-18:1(9Z))
C37H70NO7P (671.4889639999999)
PE(14:1(9Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/P-18:1(9Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
PE(P-18:1(11Z)/14:1(9Z))
C37H70NO7P (671.4889639999999)
PE(P-18:1(11Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/14:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of myristoleic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/14:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of myristoleic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
PE(P-18:1(9Z)/14:1(9Z))
C37H70NO7P (671.4889639999999)
PE(P-18:1(9Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(9Z)/14:1(9Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of myristoleic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Arenamide A
C36H57N5O7 (671.4257772000001)
A 19-membered cyclodepsipeptide consisting of a 3-hydroxy-4-methyldecanoyl moiety linked to the peptide sequence of 5 amino acids. Isolated from the fermentation broth of marine actinomycete Salinispora arenicola, it has been found to block tumour necrosis factor (TNF)-induced activation of NFkappaB-Luc human embryonic kidney cells.
PE(32:2)
C37H70NO7P (671.4889639999999)
PE(13:0/18:3(9Z,12Z,15Z))
PE(14:1(9Z)/17:2(9Z,12Z))
PE(17:2(9Z,12Z)/14:1(9Z))
PE(18:3(9Z,12Z,15Z)/13:0)
1-O-(alpha-D-galactopyranosyl)-N-[6-(4-fluorophenyl)hexanoyl]phytosphingosine
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tetradecanoate
C37H70NO7P (671.4889639999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (18Z,21Z,24Z)-dotriaconta-18,21,24-trienoate
C37H70NO7P (671.4889639999999)
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] butanoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] octanoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] hexanoate
C37H70NO7P (671.4889639999999)
[2-pentanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-propanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
C37H70NO7P (671.4889639999999)
(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxyoctadeca-4,8,12-triene-1-sulfonic acid
(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxytetradeca-4,8-diene-1-sulfonic acid
(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxyoctadeca-4,8-diene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
C37H70NO7P (671.4889639999999)
(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxytetradec-4-ene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]docosa-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-tridec-9-enoate
C37H70NO7P (671.4889639999999)
(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxytetradeca-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate
C37H70NO7P (671.4889639999999)
(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]hexadeca-4,8-diene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-pentadec-9-enoate
C37H70NO7P (671.4889639999999)
(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]hexadeca-4,8,12-triene-1-sulfonic acid
(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]icosa-4,8,12-triene-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] hexadecanoate
C37H70NO7P (671.4889639999999)
2-amino-3-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-tridecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
2-amino-3-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tridec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
2-amino-3-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tridecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
2-amino-3-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-undecanoyloxypropoxy]phosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
2-amino-3-[[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(Z)-tridec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
2-amino-3-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-undecoxypropoxy]phosphoryl]oxypropanoic acid
C35H62NO9P (671.4161971999999)
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate
[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-heptanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] decanoate
C37H70NO7P (671.4889639999999)
[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
C37H70NO7P (671.4889639999999)
[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] dodecanoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
C37H70NO7P (671.4889639999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-hexanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-dodecanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-decanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate
4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-decanoyloxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
4-[2-[(E)-dodec-5-enoyl]oxy-3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate
4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
4-[2,3-bis[[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-2-decanoyloxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(E)-dec-4-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
4-[2-decanoyloxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-decanoyloxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
[(2R)-3-decanoyloxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[(E)-dodec-5-enoyl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E)-heptadeca-9,12-dienoate
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate
[3-dodecanoyloxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[(2S)-2-decanoyloxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[2-[(E)-dec-4-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(E)-dodec-5-enoyl]oxy-2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
4-[3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate
2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
N-[6-(4-fluorophenyl)hexanoyl]-1-O-(alpha-D-galactopyranosyl)phytosphingosine
A glycophytoceramide having an alpha-D-galactopyranosyl residue at the O-1 position and a 6-(4-fluorophenyl)hexanoyl group attached to the nitrogen.
phosphatidylcholine 28:3
A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 28 carbons in total with 3 double bonds.
MePC(28:3)
C37H70NO7P (671.4889639999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MePC(27:3)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PC(29:3)
C37H70NO7P (671.4889639999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(3s,6s,9s,12s,19s)-3-benzyl-5,8,11,14,17-pentahydroxy-12-isopropyl-6-methyl-9-(2-methylpropyl)-19-[(2s)-octan-2-yl]-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one
C36H57N5O7 (671.4257772000001)
(3s,6s,9r,12s,19s)-3-benzyl-5,8,11,14,17-pentahydroxy-12-isopropyl-6-methyl-9-(2-methylpropyl)-19-[(2s)-octan-2-yl]-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one
C36H57N5O7 (671.4257772000001)
(2s)-n-[5-({3-[(4-{[(2r)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}butyl)amino]-1-hydroxypropylidene}amino)pentyl]-2-{[1-hydroxy-2-(1h-indol-3-yl)ethylidene]amino}butanediimidic acid
(3s,6s,9r,12s,19s)-3-benzyl-5,8,11,14,17-pentahydroxy-12-isopropyl-6-methyl-9-(2-methylpropyl)-19-(octan-2-yl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one
C36H57N5O7 (671.4257772000001)
(1s,2r,3r,4s,5r,6s,8s,9s,10r,13s,16s,17r)-4-(acetyloxy)-6,16-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-11-en-8-yl hexadecanoate
2-hydroxy-n-[3-hydroxy-9-methyl-1-(sulfooxy)octadeca-4,8,10-trien-2-yl]octadecanimidic acid
C37H69NO7S (671.4794483999999)
4-(acetyloxy)-6,16-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-11-en-8-yl hexadecanoate
(2r)-2-hydroxy-n-[(2s,3r,4e,8e,10e)-3-hydroxy-9-methyl-1-(sulfooxy)octadeca-4,8,10-trien-2-yl]octadecanimidic acid
C37H69NO7S (671.4794483999999)
(3r,4r)-4-{[(2r)-2-{[(3r,4r)-1,3-dihydroxy-4-{[(2r)-1-hydroxy-2-{[(2s)-1-hydroxy-2-[(1-hydroxybutylidene)amino]-3-methylbutylidene]amino}-3-methylbutylidene]amino}-6-methylheptylidene]amino}-1-hydroxypropylidene]amino}-3-hydroxy-6-methylheptanoic acid
3-benzyl-5,8,11,14,17-pentahydroxy-12-isopropyl-6-methyl-9-(2-methylpropyl)-19-(octan-2-yl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one
C36H57N5O7 (671.4257772000001)
(3s,6s,9r,12s,19s)-3-benzyl-5,8,11,14,17-pentahydroxy-12-isopropyl-6-methyl-9-(2-methylpropyl)-19-[(2r)-octan-2-yl]-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-2-one
C36H57N5O7 (671.4257772000001)