Exact Mass: 670.362469
Exact Mass Matches: 670.362469
Found 172 metabolites which its exact mass value is equals to given mass value 670.362469
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Lagosin
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics Same as: D01829
Saquinavir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
Saquinavir
Saquinavir is only found in individuals that have used or taken this drug. It is an HIV protease inhibitor which acts as an analog of an HIV protease cleavage site. It is a highly specific inhibitor of HIV-1 and HIV-2 proteases. [PubChem]Saquinavir inhibits the HIV viral proteinase enzyme which prevents cleavage of the gag-pol polyprotein, resulting in noninfectious, immature viral particles.
PA(12:0/PGJ2)
C35H59O10P (670.3845643999999)
PA(12:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/PGJ2), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/12:0)
C35H59O10P (670.3845643999999)
PA(PGJ2/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/12:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/PGJ2)
C35H59O10P (670.3845643999999)
PA(i-12:0/PGJ2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/PGJ2), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(PGJ2/i-12:0)
C35H59O10P (670.3845643999999)
PA(PGJ2/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(PGJ2/i-12:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
gaudichaudiic acid I
An organic heteroheptacyclic compound isolated from the bark of Indonesian Garcinia gaudichaudii and exhibits cytotoxic activity.
(32S,6S)-6-(S)-sec-butyl-31-[N-(N,N-dimethyl-L-leucyl)-L-tryptophyl]-(32rH,33tH)-2-oxa-5,8-diaza-1(1,4)-benzena-3(3,2)-pyrrolidina-cyclodecaphan-9c-ene-4,7-dione|Amphibin E|amphibine-E
9alpha,13alpha-diacetoxy-10beta-benzoxy-5alpha-cinnamoyl-11(15-->1)-abeotaxa-4(20),11-dien-15-ol
3-O-<6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl>-17beta-marsdenin|3-O-[6-deoxy-3-O-methyl-beta-D-allopyranosyl-(1->4)-beta-D-canaropyranosyl]-17beta-marsdenin
3beta,7beta-dihydroxy-4,4,8beta,10beta,14alpha-pentamethyl-5alpha-gon-16-en-2-one 3-O-[beta-D-glucopyranoside-(1->2)-beta-D-glucopyranoside]|styraxoside A
(19xiH)-scandomelonine|(20Xi)-15-(ent-6alpha,7alpha-epoxy-3-methoxycarbonyl-2,3-didehydro-aspidospermidin-8beta-yl)-20-methyl-3alpha,21-cyclo-meloscin-6-ene-2,21-dione|Scandomelonin
13,17-dibenzoyloxy-3-O-(2,3-dimethylbutanoyl)-20-deoxyingenol
bipindogenin-3-O-4)-beta-D-xylopyranoside>|bipindogenin-3-O-[beta-D-xylopyranosyl-(1->4)-beta-D-xylopyranoside]
[1,3,12-triacetyloxy-17-(furan-3-yl)-4,4,8,10,13-pentamethyl-2,3,5,6,7,9,11,12,16,17-decahydro-1H-cyclopenta[a]phenanthren-7-yl] 2-hydroxy-3-methylpentanoate
[1,3,12-triacetyloxy-17-(furan-3-yl)-4,4,8,10,13-pentamethyl-2,3,5,6,7,9,11,12,16,17-decahydro-1H-cyclopenta[a]phenanthren-7-yl] 2-hydroxy-3-methylpentanoate [IIN-based: Match]
[1,3,12-triacetyloxy-17-(furan-3-yl)-4,4,8,10,13-pentamethyl-2,3,5,6,7,9,11,12,16,17-decahydro-1H-cyclopenta[a]phenanthren-7-yl] 2-hydroxy-3-methylpentanoate [IIN-based on: CCMSLIB00000848377]
Phe Arg Trp Tyr
Phe Arg Tyr Trp
Phe Trp Arg Tyr
Phe Trp Tyr Arg
Phe Tyr Arg Trp
Phe Tyr Trp Arg
Arg Phe Trp Tyr
Arg Phe Tyr Trp
Arg Trp Phe Tyr
Arg Trp Tyr Phe
Arg Tyr Phe Trp
Arg Tyr Trp Phe
Trp Phe Arg Tyr
Trp Phe Tyr Arg
Trp Arg Phe Tyr
Trp Arg Tyr Phe
Trp Tyr Phe Arg
Trp Tyr Arg Phe
Tyr Phe Arg Trp
Tyr Phe Trp Arg
Tyr Arg Phe Trp
Tyr Arg Trp Phe
Tyr Trp Phe Arg
Tyr Trp Arg Phe
POV-PI
C30H55O14P (670.3329259999999)
1,4,7,17,20,23-HEXAAZA-CYCLODOTRIACONTANE HYDROCHLORIDE
(2S)-4-(1,3-benzodioxol-5-ylmethyl)-N-tert-butyl-1-[(2S,4R,5S)-2-hydroxy-4-[[(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]carbamoyl]-5-phenylhexyl]piperazine-2-carboxamide
4-[12-Acetyloxy-8,21,21-trimethyl-5-(3-methylbut-2-enyl)-8-(4-methylpent-3-enyl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.02,15.02,19.04,13.06,11]docosa-4,6(11),9,12,15-pentaen-19-yl]-2-methylbut-2-enoic acid
1-hexadecanoyl-2-succinyl-sn-glycero-3-phospho-(1-myo-inositol)
C30H55O14P (670.3329259999999)
(2S)-N-[(2S,3R)-4-[(3S,4aS,8aR)-3-[(tert-butylamino)-oxomethyl]-3,4,4a,5,6,7,8,8a-octahydro-1H-isoquinolin-2-yl]-3-hydroxy-1-phenylbutan-2-yl]-2-[[oxo(2-quinolinyl)methyl]amino]butanediamide
N-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3R,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9S,10S)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
N-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-4-pyridinecarboxamide
[2-Hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] tricosanoate
[1-Dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] undecanoate
[1-Decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] dodecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] decanoate
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C35H59O10P (670.3845643999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C35H59O10P (670.3845643999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C35H59O10P (670.3845643999999)
[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C35H59O10P (670.3845643999999)
[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] octadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
C35H59O10P (670.3845643999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
C35H59O10P (670.3845643999999)
[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate
[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] hexadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] tetradecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] heptadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] nonadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] tridecanoate
[1-Decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate
[3-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-undecanoyloxypropyl] undecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
C35H59O10P (670.3845643999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
C35H59O10P (670.3845643999999)
[1,3,12-triacetyloxy-17-(furan-3-yl)-4,4,8,10,13-pentamethyl-2,3,5,6,7,9,11,12,16,17-decahydro-1H-cyclopenta[a]phenanthren-7-yl] 2-hydroxy-3-methylpentanoate
[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] icosanoate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoate
[(2R)-2-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] dodecanoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
C35H59O10P (670.3845643999999)
[(2R)-1-decanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] dodecanoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
C35H59O10P (670.3845643999999)
(2S)-2-[(3E,12bS)-3-ethylidene-2,4,6,7,12,12b-hexahydro-1H-indolo[2,3-a]quinolizin-2-yl]-3-[(16S,20S)-19-methoxycarbonyl-16-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.02,10.04,9.015,20]henicosa-1,3,5,7,9,11,18-heptaen-11-yl]propanoic acid
phosphatidylserine 28:4(1-)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 28 carbons in total and 4 double bonds.
PI(22:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved