Exact Mass: 668.3196458
Exact Mass Matches: 668.3196458
Found 164 metabolites which its exact mass value is equals to given mass value 668.3196458
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Lycaconitine
C36H48N2O10 (668.3308787999999)
Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid
Agrimol C
Filicin
Tejedine
C38H40N2O9 (668.2733670000001)
Tejedine is found in fruits. Tejedine is an alkaloid from Berberis vulgaris ssp. australis (barberry). Alkaloid from Berberis vulgaris sspecies australis (barberry). Tejedine is found in tea and fruits.
16-Deacetylgeyerline
C36H48N2O10 (668.3308787999999)
Cryptophycin 52
C36H45ClN2O8 (668.2864280000001)
Myrtucommulone A
Z-Devd-fmk
PA(10:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(10:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/10:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/10:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(10:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/10:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/10:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
3-Hydroxy-6-desmethyl-9-O-methylthalifaboramine
C39H44N2O8 (668.3097504000001)
Thiomarinol E
An organosulfur heterocyclic compound produced by a marine bacterium Alteromonas rava and has been shown to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
filixic acid BBB|Filixsaeure|Filixsaeure BBB|Filixsaeure-BBB
5-O-acetyl-20-O-deacetyl-4,20-p-hydroxylbenzylidenedioxytaxuyunnanine L
(3S)-3,6-diamino-N-[[(2S,5S,8E,11S,15S)-15-amino-11-[(4R)-2-amino-3,4,5,6-tetrahydropyrimidin-4-yl]-8-[(carbamoylamino)methylidene]-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-1,4,7,10,13-pentazacyclohexadec-5-yl]methyl]hexanamide
C25H44N14O8 (668.3466384000001)
3-O-2S-methylbutyryl-3-deisobutyryloxymoluccensin K|moluccensin L
(51S,71S)-15,56,75,6,7-pentamethoxy-52,72-dimethyl-51,2,3,4,71,2,3,4-octahydro-2,6-dioxa-1(1,2),3(1,4)-dibenzena-5(1,7),7(8,1)-diisoquinolina-cyclooctaphan-16-ol|Thalibrunin
C39H44N2O8 (668.3097504000001)
Phe Met Trp Trp
C36H40N6O5S (668.2780750000001)
Phe Trp Met Trp
C36H40N6O5S (668.2780750000001)
Phe Trp Trp Met
C36H40N6O5S (668.2780750000001)
Met Phe Trp Trp
C36H40N6O5S (668.2780750000001)
Met Trp Phe Trp
C36H40N6O5S (668.2780750000001)
Met Trp Trp Phe
C36H40N6O5S (668.2780750000001)
Trp Phe Met Trp
C36H40N6O5S (668.2780750000001)
Trp Phe Trp Met
C36H40N6O5S (668.2780750000001)
Trp Met Phe Trp
C36H40N6O5S (668.2780750000001)
Trp Met Trp Phe
C36H40N6O5S (668.2780750000001)
Trp Trp Phe Met
C36H40N6O5S (668.2780750000001)
Trp Trp Met Phe
C36H40N6O5S (668.2780750000001)
Tejedine
C38H40N2O9 (668.2733670000001)
diphenyl carbonate,hexane-1,6-diol,5-isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane,oxepan-2-one
2-ethylhexyl 5,5-dibutyl-12-ethyl-9-oxo-10-oxa-4,6-dithia-5-stannahexadecanoate
Z-Devd-fmk
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors
2,4-Bis[(R)-1-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxo-1-cyclohexenyl)-2-methylpropyl]-6-(2-methylpropanoyl)benzene-1,3,5-triol
(13E)-10-[(3-chloro-4-methoxyphenyl)methyl]-6,6-dimethyl-3-(2-methylpropyl)-16-[1-(3-phenyloxiran-2-yl)ethyl]-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetrone
C36H45ClN2O8 (668.2864280000001)
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D050258 - Mitosis Modulators
Mitiglinide calcium
C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent D007004 - Hypoglycemic Agents
Ajugaciliatin C
A diterpene lactone isolated from the whole plants of Ajuga ciliata.
3-[alpha-D-galactosyl-(1->6)-beta-D-galactosyl]-1,2-dioctoanoyl-sn-glycerol
1-(5-carboxypentyl)-2-{3-[7-(diethylamino)-3-methyl-4-phenyl-2H-chromen-2-ylidene]prop-1-en-1-yl}-3,3-dimethyl-3H-indolium-5-sulfonate
6-[[2-(2,4-dihydroxyphenyl)-3-[(2Z)-3,7-dimethylocta-2,6-dienyl]-5-hydroxy-6-(3-methylbut-2-enyl)-4-oxo-2,3-dihydrochromen-7-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
[(1S,4S,5R,6S,8R,9S,13S,16S,18S)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-13-yl]methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate
C36H48N2O10 (668.3308787999999)
[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonanoate
[2-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] octanoate
[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate
[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate
[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate
[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate
[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate
[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate
C31H57O13P (668.3536601999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate
C31H57O13P (668.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-tridec-9-enoate
C31H57O13P (668.3536601999999)
[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate
C31H57O13P (668.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-tetradec-9-enoate
C31H57O13P (668.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-heptadec-9-enoate
C31H57O13P (668.3536601999999)
[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-nonadec-9-enoate
C31H57O13P (668.3536601999999)
[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate
C31H57O13P (668.3536601999999)
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
phosphatidylserine 28:5(1-)
C34H55NO10P (668.3563399999999)
A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 28 carbons in total and 5 double bonds.
(2s)-2-{[(2s)-2-amino-1,3-dihydroxypropylidene]amino}-n-[(2s)-1-{[(2s,3s)-2-{[(2s,3s)-2-amino-1-hydroxy-3-methylpentylidene]amino}-3-methylpentanoyl]oxy}-1,5-dioxo-5-(phosphonooxy)pentan-2-yl]pentanediimidic acid
(9s)-6-(4-{[(1s)-6-hydroxy-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}phenoxy)-4,14,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-5-ol
C39H44N2O8 (668.3097504000001)
3-(hydroxymethyl)-4-methyl-6-[1-(3,6,14-trihydroxy-2,16-dimethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadecan-15-yl)ethyl]-5,6-dihydropyran-2-one
[(1s,5r,6s,8r,9s,13s,16s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methyl 2-(2,5-dioxopyrrolidin-1-yl)benzoate
C36H48N2O10 (668.3308787999999)
5-{2-[(7-hydroxy-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)methyl]-4,5-dimethoxyphenoxy}-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-16-ol
C39H44N2O8 (668.3097504000001)
2-butanoyl-6-({3-butanoyl-5-[(3-butanoyl-2,6-dihydroxy-4-methoxy-5-methylphenyl)methyl]-2,4,6-trihydroxyphenyl}methyl)-3,5-dihydroxy-4,4-dimethylcyclohexa-2,5-dien-1-one
(1r,2r,4r,6r,8s,11s,15s,16r,17r,20r,22r,24s,27r,30s)-8,24-dihydroxy-9,9,25,25-tetramethyl-15,30-dipentyl-5,10,14,21,26,29-hexaoxanonacyclo[15.11.2.0²,¹².0²,¹⁶.0⁴,⁶.0⁶,¹¹.0¹⁸,²⁸.0²⁰,²².0²²,²⁷]triaconta-12,18(28)-diene-3,19-dione
1-{3-[(3-{[2,6-dihydroxy-4-methoxy-3-methyl-5-(2-methylpropanoyl)phenyl]methyl}-2,4,6-trihydroxy-5-(2-methylpropanoyl)phenyl)methyl]-2,4-dihydroxy-6-methoxy-5-methylphenyl}-2-methylpropan-1-one
5-hydroxy-2,2,6,6-tetramethyl-4-[(1r)-2-methyl-1-{2,4,6-trihydroxy-3-[(1r)-1-(2-hydroxy-3,3,5,5-tetramethyl-4,6-dioxocyclohex-1-en-1-yl)-2-methylpropyl]-5-(2-methylpropanoyl)phenyl}propyl]cyclohex-4-ene-1,3-dione
(9s)-6-(4-{[(1s)-6-hydroxy-7-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]methyl}phenoxy)-4,5,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-14-ol
C39H44N2O8 (668.3097504000001)
4,16,17,21,22-pentamethoxy-10,27-dimethyl-2,19-dioxa-10,27-diazaheptacyclo[28.2.2.1³,⁷.1²⁰,²⁴.0⁹,¹⁴.0¹³,¹⁸.0²⁸,³⁵]hexatriaconta-1(32),3(36),4,6,13(18),14,16,20,22,24(35),30,33-dodecaen-23-ol
C39H44N2O8 (668.3097504000001)